|
--- |
|
base_model: google/pegasus-x-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- ccdv/arxiv-summarization |
|
model-index: |
|
- name: Paper-Summarization-ArXiv |
|
results: |
|
- task: |
|
name: Summarization |
|
type: summarization |
|
dataset: |
|
name: ccdv/arxiv-summarization |
|
type: ccdv/arxiv-summarization |
|
config: section |
|
split: test |
|
args: section |
|
metrics: |
|
- name: ROUGE-1 |
|
type: rouge |
|
value: 43.2305 |
|
- name: ROUGE-2 |
|
type: rouge |
|
value: 16.6571 |
|
- name: ROUGE-L |
|
type: rouge |
|
value: 24.4315 |
|
- name: ROUGE-LSum |
|
type: rouge |
|
value: 33.9399 |
|
license: bigscience-openrail-m |
|
language: |
|
- en |
|
metrics: |
|
- rouge |
|
library_name: transformers |
|
pipeline_tag: summarization |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Paper-Summarization-ArXiv |
|
|
|
This model is a fine-tuned version of [google/pegasus-x-base](https://huggingface.co/google/pegasus-x-base) on the arxiv-summarization dataset. |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.0127 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:-----:|:---------------:| |
|
| 2.6153 | 1.0 | 3172 | 2.1045 | |
|
| 2.202 | 2.0 | 6344 | 2.0511 | |
|
| 2.1547 | 3.0 | 9516 | 2.0282 | |
|
| 2.132 | 4.0 | 12688 | 2.0164 | |
|
| 2.1222 | 5.0 | 15860 | 2.0127 | |
|
|
|
|
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
Paper Summarization |
|
|
|
## Compare to Baseline |
|
- Pegasus-X-base **zero-shot** Performance: |
|
- R-1 | R-2 | R-L | R-LSUM : 6.2269 | 0.7894 | 4.6905 | 5.4591 |
|
|
|
- **This model** |
|
|
|
|
|
- R-1 | R-2 | R-L | R-LSUM : 43.2305 | 16.6571 | 24.4315 | 33.9399 at |
|
```(python) |
|
model.generate(input_ids =inputs["input_ids"].to(device), |
|
attention_mask=inputs["attention_mask"].to(device), |
|
length_penalty=1, num_beams=2, max_length=128*4,min_length=150, no_repeat_ngram_size= 3, top_k=25,top_p=0.95) |
|
|
|
``` |
|
- R-1 | R-2 | R-L | R-LSUM : 40.8486 | 16.3717 | 25.2937 | 33.6923 (refer to **PEGASUS-X's [paper](https://arxiv.org/pdf/2208.04347.pdf)**) at |
|
```(python) |
|
model.generate(input_ids =inputs["input_ids"].to(device), |
|
attention_mask=inputs["attention_mask"].to(device), |
|
length_penalty=1, num_beams=1, max_length=128*2,top_p=1) |
|
``` |
|
- R-1 | R-2 | R-L | R-LSUM : TBD | TBD | TBD | TBD (**Diverse Beam-Search Decoding**) at |
|
```(python) |
|
model.generate(input_ids =inputs["input_ids"].to(device), |
|
attention_mask=inputs["attention_mask"].to(device), |
|
num_beam_groups=16,diversity_penalty=1.0,num_beams=16,min_length=100,max_length=128*4) |
|
``` |
|
|
|
|
|
|
|
## Training and evaluation data |
|
|
|
We use full of dataset 'ccdv/arxiv-summarization'. |
|
|
|
## Training procedure |
|
|
|
We use huggingface-based environment such as datasets, trainer, etc. |
|
|
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
```learning_rate: 1e-05,train_batch_size: 1 |
|
- eval_batch_size: 1 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 64 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 1586 |
|
- num_epochs: 5``` |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.2 |