metadata
base_model: google/pegasus-x-base
tags:
- generated_from_trainer
datasets:
- ccdv/arxiv-summarization
model-index:
- name: Paper-Summarization-ArXiv
results:
- task:
name: Summarization
type: summarization
dataset:
name: ccdv/arxiv-summarization
type: ccdv/arxiv-summarization
config: section
split: test
args: section
metrics:
- name: ROUGE-1
type: rouge
value: 43.2305
- name: ROUGE-2
type: rouge
value: 16.6571
- name: ROUGE-L
type: rouge
value: 24.4315
- name: ROUGE-LSum
type: rouge
value: 33.9399
license: bigscience-openrail-m
language:
- en
metrics:
- rouge
library_name: transformers
pipeline_tag: summarization
Paper-Summarization-ArXiv
This model is a fine-tuned version of google/pegasus-x-base on the arxiv-summarization dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0127
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
2.6153 | 1.0 | 3172 | 2.1045 |
2.202 | 2.0 | 6344 | 2.0511 |
2.1547 | 3.0 | 9516 | 2.0282 |
2.132 | 4.0 | 12688 | 2.0164 |
2.1222 | 5.0 | 15860 | 2.0127 |
Model description
More information needed
Intended uses & limitations
Paper Summarization
Compare to Baseline
Pegasus-X-base zero-shot Performance:
- R-1 | R-2 | R-L | R-LSUM : 6.2269 | 0.7894 | 4.6905 | 5.4591
This model
- R-1 | R-2 | R-L | R-LSUM : 43.2305 | 16.6571 | 24.4315 | 33.9399 at
model.generate(input_ids =inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), length_penalty=1, num_beams=2, max_length=128*4,min_length=150, no_repeat_ngram_size= 3, top_k=25,top_p=0.95)
- R-1 | R-2 | R-L | R-LSUM : 40.8486 | 16.3717 | 25.2937 | 33.6923 (refer to PEGASUS-X's paper) at
model.generate(input_ids =inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), length_penalty=1, num_beams=1, max_length=128*2,top_p=1)
- R-1 | R-2 | R-L | R-LSUM : TBD | TBD | TBD | TBD (Diverse Beam-Search Decoding) at
model.generate(input_ids =inputs["input_ids"].to(device), attention_mask=inputs["attention_mask"].to(device), num_beam_groups=16,diversity_penalty=1.0,num_beams=16,min_length=100,max_length=128*4)
Training and evaluation data
We use full of dataset 'ccdv/arxiv-summarization'.
Training procedure
We use huggingface-based environment such as datasets, trainer, etc.
Training hyperparameters
The following hyperparameters were used during training:
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 64
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1586
- num_epochs: 5```
### Framework versions
- Transformers 4.32.1
- Pytorch 2.0.1
- Datasets 2.12.0
- Tokenizers 0.13.2