wav2vec2-vivos-asr / README.md
Thienpkae's picture
Upload tokenizer
b2db3f3 verified
|
raw
history blame
2.84 kB
metadata
base_model: facebook/wav2vec2-base
datasets:
  - vivos
license: apache-2.0
metrics:
  - wer
tags:
  - generated_from_trainer
model-index:
  - name: wav2vec2-vivos-asr
    results:
      - task:
          type: automatic-speech-recognition
          name: Automatic Speech Recognition
        dataset:
          name: vivos
          type: vivos
          config: default
          split: None
          args: default
        metrics:
          - type: wer
            value: 0.3726759841005257
            name: Wer

Visualize in Weights & Biases

wav2vec2-vivos-asr

This model is a fine-tuned version of facebook/wav2vec2-base on the vivos dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7912
  • Wer: 0.3727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 400
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
5.8168 2.0 292 3.6240 1.0
3.4344 4.0 584 3.4785 1.0
3.0271 6.0 876 1.8947 0.9142
1.2453 8.0 1168 1.0293 0.6091
0.7876 10.0 1460 0.8472 0.5229
0.6062 12.0 1752 0.7675 0.4748
0.4929 14.0 2044 0.7494 0.4303
0.4376 16.0 2336 0.7481 0.4063
0.3523 18.0 2628 0.7580 0.4007
0.309 20.0 2920 0.7676 0.3851
0.2694 22.0 3212 0.7631 0.3819
0.2531 24.0 3504 0.7717 0.3761
0.2472 26.0 3796 0.7825 0.3710
0.2223 28.0 4088 0.7905 0.3732
0.2183 30.0 4380 0.7912 0.3727

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.1.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1