--- base_model: facebook/wav2vec2-base datasets: - vivos license: apache-2.0 metrics: - wer tags: - generated_from_trainer model-index: - name: wav2vec2-vivos-asr results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: vivos type: vivos config: default split: None args: default metrics: - type: wer value: 0.3726759841005257 name: Wer --- [Visualize in Weights & Biases](https://wandb.ai/khackho01125-CMC-University/Wav2Vec2/runs/p3skrhqk) # wav2vec2-vivos-asr This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the vivos dataset. It achieves the following results on the evaluation set: - Loss: 0.7912 - Wer: 0.3727 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 400 - num_epochs: 30 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 5.8168 | 2.0 | 292 | 3.6240 | 1.0 | | 3.4344 | 4.0 | 584 | 3.4785 | 1.0 | | 3.0271 | 6.0 | 876 | 1.8947 | 0.9142 | | 1.2453 | 8.0 | 1168 | 1.0293 | 0.6091 | | 0.7876 | 10.0 | 1460 | 0.8472 | 0.5229 | | 0.6062 | 12.0 | 1752 | 0.7675 | 0.4748 | | 0.4929 | 14.0 | 2044 | 0.7494 | 0.4303 | | 0.4376 | 16.0 | 2336 | 0.7481 | 0.4063 | | 0.3523 | 18.0 | 2628 | 0.7580 | 0.4007 | | 0.309 | 20.0 | 2920 | 0.7676 | 0.3851 | | 0.2694 | 22.0 | 3212 | 0.7631 | 0.3819 | | 0.2531 | 24.0 | 3504 | 0.7717 | 0.3761 | | 0.2472 | 26.0 | 3796 | 0.7825 | 0.3710 | | 0.2223 | 28.0 | 4088 | 0.7905 | 0.3732 | | 0.2183 | 30.0 | 4380 | 0.7912 | 0.3727 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1