English
art
Stable Diffusion
lyraSD / README.md
bigmoyan's picture
Update README.md
ce7511f
|
raw
history blame
2.25 kB
metadata
license: creativeml-openrail-m
language:
  - zh
  - en
library_name: diffusers
pipeline_tag: text-to-image
tags:
  - art
  - tensorRT

Model Card for lyraSD

lyraSD is currently the fastest Stable Diffusion model available, boasting an inference cost of only 0.36 seconds for a 512x512 image, accelerating the process up to 10 times faster than the original version.

Among its main features are:

  • weights: original Stable Diffusion 1.5 weights
  • input image: 512x512 (in img2img mode)
  • output image: 512x512
  • device requirements: Nvidia Ampere architecture (A100) or compatable
  • super-resultion: 4x by default, optional.

Speed

test environment

  • device: Nvidia A100 40G
  • img size: 512x512
  • percision:fp16
  • steps: 30
  • solver: LMSD

text2img

model time cost(ms) memory(MB)
Pytorch ~5000ms ~10240
LyraSD ~435ms ~4026

superResolution

model time cost(ms) memory(MB)
Pytorch 720ms ~6650
LyraSD ~26ms ~1600

Model Sources [optional]

Uses

from lyraSD import LyraSD

t2imodel = LyraSD("text2img", "./sd1.5-engine")
t2imodel.inference(prompt="A fantasy landscape, trending on artstation", use_super=False)


from PIL import Image
i2imodel = LyraSD("img2img", "./sd1.5-engine")
demo_img = Image.open("output/text2img_demo.jpg")
i2imodel.inference(prompt="A fantasy landscape, trending on artstation", image=demo_img)

Demo output

text2img

text2img_demo

img2img

text2img_demo

text2img_demo

environment

docker pull bigmoyan/lyra_aigc:v0.1

citation

@Misc{xFormers2022,
  author =       {Bin Wu, Kangjian Wu, Zhengtao Wang},
  title =        {LyraSD},
  howpublished = {\url{https://huggingface.co/TMElyralab/lyraSD}},
  year =         {2023}
}

report bug