Model Card for lyraSD
We consider the Diffusers as the much more extendable framework for the SD ecosystem. Therefore, we have made a pivot to Diffusers, leading to a complete update of lyraSD.
lyraSD is currently the fastest Stable Diffusion model that can 100% align the outputs of Diffusers available, boasting an inference cost of only 0.36 seconds for a 512x512 image, accelerating the process up to 50% faster than the original version.
Among its main features are:
- All Commonly used SD1.5 and SDXL pipelines
- Text2Img
- Img2Img
- Inpainting
- ControlNetText2Img
- ControlNetImg2Img
- IpAdapterText2Img
- Fast ControlNet Hot Swap: Can hot swap a ControlNet model weights within 0.6s
- Fast LoRA Hot Swap: Can hot swap a Lora within 0.14s
- 100% likeness to diffusers output
- Supported Devices: Any GPU with SM version >= 80. For example, Nvidia Nvidia Ampere architecture (A2, A10, A16, A30, A40, A100), RTX 4090, 3080 and etc.
Speed
test environment
- Device: Nvidia A100 40G
- Nvidia driver version: 525.105.17
- Nvidia cuda version: 12.0
- Percision:fp16
- Steps: 20
- Sampler: EulerA
SD1.5 Text2Img Performance
SD1.5 ControlNet-Text2Img Performance
SDXL Text2Img Performance
SDXL ControlNet-Text2Img Performance
SD Model Load Performance
Model Sources
SD1.5
- Checkpoint: https://civitai.com/models/7371/rev-animated
- ControlNet: https://huggingface.co/lllyasviel/sd-controlnet-canny
- Lora: https://civitai.com/models/18323?modelVersionId=46846
SDXL
- Checkpoint: https://civitai.com/models/43977?modelVersionId=227916
- ControlNet: https://huggingface.co/diffusers/controlnet-canny-sdxl-1.0
- Lora: https://civitai.com/models/245889/dissolve-style-lora-15sdxl
SD1.5 Text2Img Uses
import torch
import time
from lyrasd_model import LyraSdTxt2ImgPipeline
# 存放模型文件的路径,应该包含一下结构(和diffusers一致):
# 1. clip 模型
# 2. 转换好的优化后的 unet 模型,放入其中的 unet_bins 文件夹
# 3. vae 模型
# 4. scheduler 配置
# LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu12_sm80.so"
model_path = "./models/rev-animated"
lora_path = "./models/xiaorenshu.safetensors"
torch.classes.load_library(lib_path)
# 构建 Txt2Img 的 Pipeline
model = LyraSdTxt2ImgPipeline()
model.reload_pipe(model_path)
# load lora
# lora model path, name,lora strength
model.load_lora_v2(lora_path, "xiaorenshu", 0.4)
# 准备应用的输入和超参数
prompt = "a cat, cute, cartoon, concise, traditional, chinese painting, Tang and Song Dynasties, masterpiece, 4k, 8k, UHD, best quality"
negative_prompt = "(((horrible))), (((scary))), (((naked))), (((large breasts))), high saturation, colorful, human:2, body:2, low quality, bad quality, lowres, out of frame, duplicate, watermark, signature, text, frames, cut, cropped, malformed limbs, extra limbs, (((missing arms))), (((missing legs)))"
height, width = 512, 512
steps = 20
guidance_scale = 7
generator = torch.Generator().manual_seed(123)
num_images = 1
start = time.perf_counter()
# 推理生成
images = model(prompt, height, width, steps,
guidance_scale, negative_prompt, num_images,
generator=generator)
print("image gen cost: ",time.perf_counter() - start)
# 存储生成的图片
for i, image in enumerate(images):
image.save(f"outputs/res_txt2img_lora_{i}.png")
# unload lora, lora’s name, clear lora cache
model.unload_lora_v2("xiaorenshu", True)
SDXL Text2Img Uses
import torch
import time
from lyrasd_model import LyraSdXLTxt2ImgPipeline
# 存放模型文件的路径,应该包含一下结构:
# 1. clip 模型
# 2. 转换好的优化后的 unet 模型,放入其中的 unet_bins 文件夹
# 3. vae 模型
# 4. scheduler 配置
# LyraSD 的 C++ 编译动态链接库,其中包含 C++ CUDA 计算的细节
lib_path = "./lyrasd_model/lyrasd_lib/libth_lyrasd_cu12_sm80.so"
model_path = "./models/helloworldSDXL20Fp16"
lora_path = "./models/dissolve_sdxl.safetensors"
torch.classes.load_library(lib_path)
# 构建 Txt2Img 的 Pipeline
model = LyraSdXLTxt2ImgPipeline()
model.reload_pipe(model_path)
# load lora
# lora model path, name,lora strength
model.load_lora_v2(lora_path, "dissolve_sdxl", 0.4)
# 准备应用的输入和超参数
prompt = "a cat, cute, cartoon, concise, traditional, chinese painting, Tang and Song Dynasties, masterpiece, 4k, 8k, UHD, best quality"
negative_prompt = "(((horrible))), (((scary))), (((naked))), (((large breasts))), high saturation, colorful, human:2, body:2, low quality, bad quality, lowres, out of frame, duplicate, watermark, signature, text, frames, cut, cropped, malformed limbs, extra limbs, (((missing arms))), (((missing legs)))"
height, width = 512, 512
steps = 20
guidance_scale = 7
generator = torch.Generator().manual_seed(123)
num_images = 1
start = time.perf_counter()
# 推理生成
images = model( prompt,
height=height,
width=width,
num_inference_steps=steps,
num_images_per_prompt=1,
guidance_scale=guidance_scale,
negative_prompt=negative_prompt,
generator=generator
)
print("image gen cost: ",time.perf_counter() - start)
# 存储生成的图片
for i, image in enumerate(images):
image.save(f"outputs/res_txt2img_xl_lora_{i}.png")
# unload lora,参数为 lora 的名字,是否清除 lora 缓存
model.unload_lora_v2("dissolve_sdxl", True)
Demo output
Text2Img
SD1.5 Text2Img
SD1.5 Text2Img with Lora
SDXL Text2Img
SDXL Text2Img with Lora
ControlNet Text2Img
Control Image
SD1.5 ControlNet Text2Img Output
SDXL ControlNet Text2Img Output
Docker Environment Recommendation
- For Cuda 12.X: we recommend
yibolu96/lyrasd_workspace:1.0.0
docker pull yibolu96/lyrasd_workspace:1.0.0
docker run --rm -it --gpus all -v ./:/lyraSD yibolu96/lyrasd_workspace:1.0.0
pip install -r requirements.txt
python txt2img_demo.py
Citation
@Misc{lyraSD_2024,
author = {Kangjian Wu, Zhengtao Wang, Yibo Lu, Haoxiong Su, Sa Xiao, Bin Wu},
title = {lyraSD: Accelerating Stable Diffusion with best flexibility},
howpublished = {\url{https://huggingface.co/TMElyralab/lyraSD}},
year = {2024}
}
Report bug
- start a discussion to report any bugs!--> https://huggingface.co/TMElyralab/lyraSD/discussions
- report bug with a
[bug]
mark in the title.