St4n's picture
End of training
2fdcfb4 verified
|
raw
history blame
2.34 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
  - generated_from_trainer
datasets:
  - audiofolder
metrics:
  - wer
model-index:
  - name: wav2vec2-base-self-331-colab
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: audiofolder
          type: audiofolder
          config: default
          split: test
          args: default
        metrics:
          - name: Wer
            type: wer
            value: 0.15007215007215008

wav2vec2-base-self-331-colab

This model is a fine-tuned version of facebook/wav2vec2-base-960h on the audiofolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3282
  • Wer: 0.1501

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
2.3444 30.77 200 2.1940 0.9841
1.972 61.54 400 1.4582 0.8167
1.3875 92.31 600 0.8476 0.5902
0.9092 123.08 800 0.5445 0.3636
0.6382 153.85 1000 0.4129 0.2641
0.5789 184.62 1200 0.3497 0.1876
0.4632 215.38 1400 0.3478 0.1616
0.4474 246.15 1600 0.3394 0.1486
0.429 276.92 1800 0.3282 0.1501

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2