File size: 2,336 Bytes
d8d1e47 3b84b4d 1b5c3b2 3b84b4d 1b5c3b2 2fdcfb4 d8d1e47 3b84b4d d8d1e47 3b84b4d d8d1e47 3b84b4d 1b5c3b2 2fdcfb4 d8d1e47 3b84b4d d8d1e47 3b84b4d d8d1e47 3b84b4d d8d1e47 3b84b4d d8d1e47 3b84b4d d8d1e47 3b84b4d d8d1e47 3b84b4d d8d1e47 3b84b4d d8d1e47 3b84b4d 2fdcfb4 3b84b4d d8d1e47 3b84b4d d8d1e47 2fdcfb4 d8d1e47 3b84b4d d8d1e47 3b84b4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base-960h
tags:
- generated_from_trainer
datasets:
- audiofolder
metrics:
- wer
model-index:
- name: wav2vec2-base-self-331-colab
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: audiofolder
type: audiofolder
config: default
split: test
args: default
metrics:
- name: Wer
type: wer
value: 0.15007215007215008
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# wav2vec2-base-self-331-colab
This model is a fine-tuned version of [facebook/wav2vec2-base-960h](https://huggingface.co/facebook/wav2vec2-base-960h) on the audiofolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3282
- Wer: 0.1501
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 300
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:------:|:----:|:---------------:|:------:|
| 2.3444 | 30.77 | 200 | 2.1940 | 0.9841 |
| 1.972 | 61.54 | 400 | 1.4582 | 0.8167 |
| 1.3875 | 92.31 | 600 | 0.8476 | 0.5902 |
| 0.9092 | 123.08 | 800 | 0.5445 | 0.3636 |
| 0.6382 | 153.85 | 1000 | 0.4129 | 0.2641 |
| 0.5789 | 184.62 | 1200 | 0.3497 | 0.1876 |
| 0.4632 | 215.38 | 1400 | 0.3478 | 0.1616 |
| 0.4474 | 246.15 | 1600 | 0.3394 | 0.1486 |
| 0.429 | 276.92 | 1800 | 0.3282 | 0.1501 |
### Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
|