language:
- en
license: apache-2.0
datasets:
- SenseLLM/ReflectionSeq-GPT
- SenseLLM/ReflectionSeq-DS
model-index:
- name: ReflectionCoder-CL-34B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 40.08
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 14.26
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 1.96
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.11
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 10.4
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 4.71
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
name: Open LLM Leaderboard
ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation
π Paper β’ π Repo β’ π€ Models β’ π Datasets
Introduction
ReflectionCoder is a novel approach that effectively leverages reflection sequences constructed by integrating compiler feedback to improve one-off code generation performance. Please refer to our paper and repo for more details!
Models
Model | Checkpoint | Size | HumanEval (+) | MBPP (+) | License |
---|---|---|---|---|---|
ReflectionCoder-CL-7B | π€ HF Link | 7B | 75.0 (68.9) | 72.2 (61.4) | Llama2 |
ReflectionCoder-CL-34B | π€ HF Link | 34B | 70.7 (66.5) | 68.4 (56.6) | Llama2 |
ReflectionCoder-DS-6.7B | π€ HF Link | 6.7B | 80.5 (74.4) | 81.5 (69.6) | DeepSeek |
ReflectionCoder-DS-33B | π€ HF Link | 33B | 82.9 (76.8) | 84.1 (72.0) | DeepSeek |
Datasets
How to Use
Chat Format
Following chat templates of most models, we use two special tokens to wrap the message of user and assistant, i.e., <|user|>
, <|assistant|>
, and <|endofmessage|>
. Furthermore, we use two special tokens to wrap the content of different blocks, i.e., <|text|>
and <|endofblock|>
. You can use the following template to prompt our ReflectionCoder.
import torch
from transformers import pipeline
chat = [
{"role": "user", "content": "<Your code instruction here>"}
]
generator = pipeline(
model="SenseLLM/ReflectionCoder-CL-34B",
task="text-generation",
torch_dtype=torch.bfloat16,
device_map="auto",
)
result = generator(chat, max_length=128, num_return_sequences=1)
print(result)
Please refer to our GitHub Repo for more technical details.
Citation
If you find this repo useful for your research, please kindly cite our paper:
@misc{ren2024reflectioncoder,
title={ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation},
author={Houxing Ren and Mingjie Zhan and Zhongyuan Wu and Aojun Zhou and Junting Pan and Hongsheng Li},
year={2024},
eprint={2405.17057},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Acknowledgments
We thank the following amazing projects that truly inspired us:
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 11.92 |
IFEval (0-Shot) | 40.08 |
BBH (3-Shot) | 14.26 |
MATH Lvl 5 (4-Shot) | 1.96 |
GPQA (0-shot) | 0.11 |
MuSR (0-shot) | 10.40 |
MMLU-PRO (5-shot) | 4.71 |