Text Generation
Transformers
Safetensors
English
llama
conversational
text-generation-inference
Inference Endpoints
File size: 7,295 Bytes
436ce8d
492f3a8
 
436ce8d
 
 
 
492f3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436ce8d
55a4864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
436ce8d
 
 
 
55a4864
 
 
 
 
436ce8d
 
55a4864
 
 
 
 
 
 
 
e939100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55a4864
 
436ce8d
55a4864
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492f3a8
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
---
language:
- en
license: apache-2.0
datasets:
- SenseLLM/ReflectionSeq-GPT
- SenseLLM/ReflectionSeq-DS
model-index:
- name: ReflectionCoder-CL-34B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 40.08
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 14.26
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 1.96
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 0.11
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 10.4
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 4.71
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=SenseLLM/ReflectionCoder-CL-34B
      name: Open LLM Leaderboard
---
## ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation

<p align="center">
    <a href="https://arxiv.org/abs/2405.17057">πŸ“„ Paper</a> β€’
    <a href="https://github.com/SenseLLM/ReflectionCoder">🏠 Repo</a> β€’
    <a href="https://huggingface.co/SenseLLM/ReflectionCoder-DS-33B">πŸ€– Models</a> β€’
    <a href="https://huggingface.co/datasets/SenseLLM/ReflectionSeq-GPT">πŸ“š Datasets </a>
</p>

## Introduction
ReflectionCoder is a novel approach that effectively leverages reflection sequences constructed by integrating compiler feedback to improve one-off code generation performance. Please refer to our paper and repo for more details!

![](method.png)

<hr>

## Models

| Model | Checkpoint | Size | HumanEval (+) | MBPP (+) | License|
|:-------|:------------|:------|:---------------|:----------|:--------|
| ReflectionCoder-CL-7B   | πŸ€— [HF Link](https://huggingface.co/SenseLLM/ReflectionCoder-CL-7B) | 7B   | 75.0 (68.9)     | 72.2 (61.4)     | [Llama2](https://ai.meta.com/llama/license/) |
| ReflectionCoder-CL-34B  | πŸ€— [HF Link](https://huggingface.co/SenseLLM/ReflectionCoder-CL-34B) | 34B  | 70.7 (66.5)     | 68.4 (56.6)     | [Llama2](https://ai.meta.com/llama/license/) |
| ReflectionCoder-DS-6.7B | πŸ€— [HF Link](https://huggingface.co/SenseLLM/ReflectionCoder-DS-6.7B) | 6.7B | 80.5 (74.4)     | 81.5 (69.6)     | [DeepSeek](https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL) |
| ReflectionCoder-DS-33B  | πŸ€— [HF Link](https://huggingface.co/SenseLLM/ReflectionCoder-DS-33B) | 33B  | 82.9 (76.8) | 84.1 (72.0) | [DeepSeek](https://github.com/deepseek-ai/DeepSeek-Coder/blob/main/LICENSE-MODEL) |

## Datasets

| Dataset           | Link           | License                                      |
|:-------------------|:----------------|:----------------------------------------------|
| ReflectionSeq-GPT | πŸ€— [HF Link](https://huggingface.co/datasets/SenseLLM/ReflectionSeq-GPT) | [License](LICENSE) |
| ReflectionSeq-DS  | πŸ€— [HF Link](https://huggingface.co/datasets/SenseLLM/ReflectionSeq-DS) | [License](LICENSE) |


## How to Use

#### Chat Format
Following chat templates of most models, we use two special tokens to wrap the message of user and assistant, *i.e.*, ``<|user|>``, ``<|assistant|>``, and ``<|endofmessage|>``. Furthermore, we use two special tokens to wrap the content of different blocks, *i.e.*,  ``<|text|>`` and ``<|endofblock|>``. You can use the following template to prompt our ReflectionCoder.

```python
import torch
from transformers import pipeline

chat = [
    {"role": "user", "content": "<Your code instruction here>"}
]

generator = pipeline(
    model="SenseLLM/ReflectionCoder-CL-34B",
    task="text-generation",
    torch_dtype=torch.bfloat16,
    device_map="auto",
)

result = generator(chat, max_length=128, num_return_sequences=1)

print(result)
```

Please refer to our [GitHub Repo](https://github.com/SenseLLM/ReflectionCoder) for more technical details.

## Citation

If you find this repo useful for your research, please kindly cite our paper:
```
@misc{ren2024reflectioncoder,
    title={ReflectionCoder: Learning from Reflection Sequence for Enhanced One-off Code Generation}, 
    author={Houxing Ren and Mingjie Zhan and Zhongyuan Wu and Aojun Zhou and Junting Pan and Hongsheng Li},
    year={2024},
    eprint={2405.17057},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
```

## Acknowledgments

We thank the following amazing projects that truly inspired us:

- [CodeLlama](https://ai.meta.com/research/publications/code-llama-open-foundation-models-for-code/)
- [DeepSeek-Coder](https://github.com/deepseek-ai/DeepSeek-Coder)
- [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder)
- [Evol-CodeAlpaca-v1](https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1)
- [MagiCoder](https://github.com/ise-uiuc/magicoder/tree/main)
- [EvalPlus](https://github.com/evalplus/evalplus)
- [OpenCoderInterpreter](https://github.com/OpenCodeInterpreter/OpenCodeInterpreter/tree/main)
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_SenseLLM__ReflectionCoder-CL-34B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |11.92|
|IFEval (0-Shot)    |40.08|
|BBH (3-Shot)       |14.26|
|MATH Lvl 5 (4-Shot)| 1.96|
|GPQA (0-shot)      | 0.11|
|MuSR (0-shot)      |10.40|
|MMLU-PRO (5-shot)  | 4.71|