metadata
tags:
- mteb
model-index:
- name: alime-reranker-large-zh
results:
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv1-reranking
name: MTEB CMedQAv1
config: default
split: test
revision: None
metrics:
- type: map
value: 82.32176162633382
- type: mrr
value: 84.91440476190478
- task:
type: Reranking
dataset:
type: C-MTEB/CMedQAv2-reranking
name: MTEB CMedQAv2
config: default
split: test
revision: None
metrics:
- type: map
value: 84.08586457179406
- type: mrr
value: 86.9011507936508
- task:
type: Reranking
dataset:
type: C-MTEB/Mmarco-reranking
name: MTEB MMarcoReranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 35.497382125464284
- type: mrr
value: 35.29206349206349
- task:
type: Reranking
dataset:
type: C-MTEB/T2Reranking
name: MTEB T2Reranking
config: default
split: dev
revision: None
metrics:
- type: map
value: 68.25849742148222
- type: mrr
value: 78.64202157956387
alime-reranker-large-zh
The alime reranker model.
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
pairs = [["西湖在哪?", "西湖风景名胜区位于浙江省杭州市"],["今天天气不错","你吓死我了"]]
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
tokenizer = AutoTokenizer.from_pretrained("Pristinenlp/alime-reranker-large-zh")
model = AutoModelForSequenceClassification.from_pretrained("Pristinenlp/alime-reranker-large-zh").to(device)
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512).to(device)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores.tolist())