alime-reranker-large-zh
The alime reranker model.
Usage
from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch
pairs = [["西湖在哪?", "西湖风景名胜区位于浙江省杭州市"],["今天天气不错","你吓死我了"]]
if torch.cuda.is_available():
device = torch.device("cuda")
else:
device = torch.device("cpu")
tokenizer = AutoTokenizer.from_pretrained("Pristinenlp/alime-reranker-large-zh")
model = AutoModelForSequenceClassification.from_pretrained("Pristinenlp/alime-reranker-large-zh").to(device)
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512).to(device)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores.tolist())
- Downloads last month
- 110
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Spaces using Pristinenlp/alime-reranker-large-zh 2
Evaluation results
- map on MTEB CMedQAv1test set self-reported82.322
- mrr on MTEB CMedQAv1test set self-reported84.914
- map on MTEB CMedQAv2test set self-reported84.086
- mrr on MTEB CMedQAv2test set self-reported86.901
- map on MTEB MMarcoRerankingself-reported35.497
- mrr on MTEB MMarcoRerankingself-reported35.292
- map on MTEB T2Rerankingself-reported68.258
- mrr on MTEB T2Rerankingself-reported78.642