Niki548's picture
End of training
511357d verified
metadata
base_model: Rostlab/prot_bert
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: prot_bert-fine-tuned-toxicity_3.1
    results: []

prot_bert-fine-tuned-toxicity_3.1

This model is a fine-tuned version of Rostlab/prot_bert on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6981
  • Accuracy: 0.5484
  • Precision: 0.3007
  • Recall: 0.5484
  • F1: 0.3884

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
0.6948 1.0 16 0.6957 0.5484 0.3007 0.5484 0.3884
0.6957 2.0 32 0.6965 0.5484 0.3007 0.5484 0.3884
0.6939 3.0 48 0.6989 0.5484 0.3007 0.5484 0.3884
0.6924 4.0 64 0.6977 0.5484 0.3007 0.5484 0.3884
0.6924 5.0 80 0.6976 0.5484 0.3007 0.5484 0.3884
0.6928 6.0 96 0.6984 0.5484 0.3007 0.5484 0.3884
0.6923 7.0 112 0.6976 0.5484 0.3007 0.5484 0.3884
0.6876 8.0 128 0.6981 0.5484 0.3007 0.5484 0.3884

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1