Niki548 commited on
Commit
511357d
1 Parent(s): 14eea22

End of training

Browse files
Files changed (1) hide show
  1. README.md +73 -0
README.md ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Rostlab/prot_bert
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - precision
8
+ - recall
9
+ - f1
10
+ model-index:
11
+ - name: prot_bert-fine-tuned-toxicity_3.1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # prot_bert-fine-tuned-toxicity_3.1
19
+
20
+ This model is a fine-tuned version of [Rostlab/prot_bert](https://huggingface.co/Rostlab/prot_bert) on an unknown dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.6981
23
+ - Accuracy: 0.5484
24
+ - Precision: 0.3007
25
+ - Recall: 0.5484
26
+ - F1: 0.3884
27
+
28
+ ## Model description
29
+
30
+ More information needed
31
+
32
+ ## Intended uses & limitations
33
+
34
+ More information needed
35
+
36
+ ## Training and evaluation data
37
+
38
+ More information needed
39
+
40
+ ## Training procedure
41
+
42
+ ### Training hyperparameters
43
+
44
+ The following hyperparameters were used during training:
45
+ - learning_rate: 2e-05
46
+ - train_batch_size: 8
47
+ - eval_batch_size: 8
48
+ - seed: 42
49
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
50
+ - lr_scheduler_type: linear
51
+ - num_epochs: 8
52
+ - mixed_precision_training: Native AMP
53
+
54
+ ### Training results
55
+
56
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
57
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
58
+ | 0.6948 | 1.0 | 16 | 0.6957 | 0.5484 | 0.3007 | 0.5484 | 0.3884 |
59
+ | 0.6957 | 2.0 | 32 | 0.6965 | 0.5484 | 0.3007 | 0.5484 | 0.3884 |
60
+ | 0.6939 | 3.0 | 48 | 0.6989 | 0.5484 | 0.3007 | 0.5484 | 0.3884 |
61
+ | 0.6924 | 4.0 | 64 | 0.6977 | 0.5484 | 0.3007 | 0.5484 | 0.3884 |
62
+ | 0.6924 | 5.0 | 80 | 0.6976 | 0.5484 | 0.3007 | 0.5484 | 0.3884 |
63
+ | 0.6928 | 6.0 | 96 | 0.6984 | 0.5484 | 0.3007 | 0.5484 | 0.3884 |
64
+ | 0.6923 | 7.0 | 112 | 0.6976 | 0.5484 | 0.3007 | 0.5484 | 0.3884 |
65
+ | 0.6876 | 8.0 | 128 | 0.6981 | 0.5484 | 0.3007 | 0.5484 | 0.3884 |
66
+
67
+
68
+ ### Framework versions
69
+
70
+ - Transformers 4.41.2
71
+ - Pytorch 2.3.0+cu121
72
+ - Datasets 2.20.0
73
+ - Tokenizers 0.19.1