MelanieKoe's picture
Model save
f44dfc6 verified
metadata
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v2-base-pretrained_lr5e-5_at0.3_da1
    results: []

w2v2-base-pretrained_lr5e-5_at0.3_da1

This model is a fine-tuned version of facebook/wav2vec2-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4352
  • Wer: 0.1704

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
19.6725 3.97 250 4.9409 1.0
3.5043 7.94 500 3.2414 1.0
3.1162 11.9 750 3.1351 1.0
2.2138 15.87 1000 0.9146 0.9184
0.5308 19.84 1250 0.6292 0.4357
0.2762 23.81 1500 0.8713 0.2384
0.1894 27.78 1750 0.9537 0.1905
0.1339 31.75 2000 1.2355 0.1824
0.1002 35.71 2250 1.2193 0.1739
0.0858 39.68 2500 1.1557 0.1709
0.0711 43.65 2750 1.3591 0.1692
0.0589 47.62 3000 1.3372 0.1683
0.0525 51.59 3250 1.4133 0.1683
0.0464 55.56 3500 1.4969 0.1679
0.0436 59.52 3750 1.4262 0.1674
0.0401 63.49 4000 1.4352 0.1704

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.0
  • Datasets 2.14.6
  • Tokenizers 0.14.1