File size: 2,368 Bytes
d6be281 f44dfc6 d6be281 f44dfc6 d6be281 f44dfc6 d6be281 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
---
license: apache-2.0
base_model: facebook/wav2vec2-base
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: w2v2-base-pretrained_lr5e-5_at0.3_da1
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# w2v2-base-pretrained_lr5e-5_at0.3_da1
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 1.4352
- Wer: 0.1704
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- training_steps: 4000
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 19.6725 | 3.97 | 250 | 4.9409 | 1.0 |
| 3.5043 | 7.94 | 500 | 3.2414 | 1.0 |
| 3.1162 | 11.9 | 750 | 3.1351 | 1.0 |
| 2.2138 | 15.87 | 1000 | 0.9146 | 0.9184 |
| 0.5308 | 19.84 | 1250 | 0.6292 | 0.4357 |
| 0.2762 | 23.81 | 1500 | 0.8713 | 0.2384 |
| 0.1894 | 27.78 | 1750 | 0.9537 | 0.1905 |
| 0.1339 | 31.75 | 2000 | 1.2355 | 0.1824 |
| 0.1002 | 35.71 | 2250 | 1.2193 | 0.1739 |
| 0.0858 | 39.68 | 2500 | 1.1557 | 0.1709 |
| 0.0711 | 43.65 | 2750 | 1.3591 | 0.1692 |
| 0.0589 | 47.62 | 3000 | 1.3372 | 0.1683 |
| 0.0525 | 51.59 | 3250 | 1.4133 | 0.1683 |
| 0.0464 | 55.56 | 3500 | 1.4969 | 0.1679 |
| 0.0436 | 59.52 | 3750 | 1.4262 | 0.1674 |
| 0.0401 | 63.49 | 4000 | 1.4352 | 0.1704 |
### Framework versions
- Transformers 4.35.0
- Pytorch 2.0.0
- Datasets 2.14.6
- Tokenizers 0.14.1
|