metadata
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA11
results: []
Phi0503HMA11
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.1516
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
4.8564 | 0.09 | 10 | 1.3605 |
0.5497 | 0.18 | 20 | 0.2614 |
0.2903 | 0.27 | 30 | 0.2683 |
0.2461 | 0.36 | 40 | 0.2304 |
0.2221 | 0.45 | 50 | 0.2068 |
0.1477 | 0.54 | 60 | 0.1427 |
0.1316 | 0.63 | 70 | 0.1772 |
0.1198 | 0.73 | 80 | 0.0857 |
0.0819 | 0.82 | 90 | 0.0997 |
0.0985 | 0.91 | 100 | 0.0834 |
3.0334 | 1.0 | 110 | 3.2368 |
1.8691 | 1.09 | 120 | 0.8954 |
0.565 | 1.18 | 130 | 0.3844 |
0.4346 | 1.27 | 140 | 0.4378 |
0.3277 | 1.36 | 150 | 0.2849 |
0.2888 | 1.45 | 160 | 0.2455 |
0.2336 | 1.54 | 170 | 0.2010 |
0.2016 | 1.63 | 180 | 0.1956 |
0.1855 | 1.72 | 190 | 0.1804 |
0.1981 | 1.81 | 200 | 0.1913 |
0.1829 | 1.9 | 210 | 0.1781 |
0.1808 | 1.99 | 220 | 0.1771 |
0.177 | 2.08 | 230 | 0.1778 |
0.1753 | 2.18 | 240 | 0.1702 |
0.1685 | 2.27 | 250 | 0.1727 |
0.1671 | 2.36 | 260 | 0.1654 |
0.1594 | 2.45 | 270 | 0.1603 |
0.1581 | 2.54 | 280 | 0.1569 |
0.1565 | 2.63 | 290 | 0.1536 |
0.1546 | 2.72 | 300 | 0.1520 |
0.1582 | 2.81 | 310 | 0.1518 |
0.1512 | 2.9 | 320 | 0.1516 |
0.1521 | 2.99 | 330 | 0.1516 |
Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0