File size: 3,100 Bytes
e77a95c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 |
---
license: mit
base_model: microsoft/Phi-3-mini-4k-instruct
tags:
- generated_from_trainer
model-index:
- name: Phi0503HMA11
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Phi0503HMA11
This model is a fine-tuned version of [microsoft/Phi-3-mini-4k-instruct](https://huggingface.co/microsoft/Phi-3-mini-4k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1516
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 16
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine_with_restarts
- lr_scheduler_warmup_steps: 100
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 4.8564 | 0.09 | 10 | 1.3605 |
| 0.5497 | 0.18 | 20 | 0.2614 |
| 0.2903 | 0.27 | 30 | 0.2683 |
| 0.2461 | 0.36 | 40 | 0.2304 |
| 0.2221 | 0.45 | 50 | 0.2068 |
| 0.1477 | 0.54 | 60 | 0.1427 |
| 0.1316 | 0.63 | 70 | 0.1772 |
| 0.1198 | 0.73 | 80 | 0.0857 |
| 0.0819 | 0.82 | 90 | 0.0997 |
| 0.0985 | 0.91 | 100 | 0.0834 |
| 3.0334 | 1.0 | 110 | 3.2368 |
| 1.8691 | 1.09 | 120 | 0.8954 |
| 0.565 | 1.18 | 130 | 0.3844 |
| 0.4346 | 1.27 | 140 | 0.4378 |
| 0.3277 | 1.36 | 150 | 0.2849 |
| 0.2888 | 1.45 | 160 | 0.2455 |
| 0.2336 | 1.54 | 170 | 0.2010 |
| 0.2016 | 1.63 | 180 | 0.1956 |
| 0.1855 | 1.72 | 190 | 0.1804 |
| 0.1981 | 1.81 | 200 | 0.1913 |
| 0.1829 | 1.9 | 210 | 0.1781 |
| 0.1808 | 1.99 | 220 | 0.1771 |
| 0.177 | 2.08 | 230 | 0.1778 |
| 0.1753 | 2.18 | 240 | 0.1702 |
| 0.1685 | 2.27 | 250 | 0.1727 |
| 0.1671 | 2.36 | 260 | 0.1654 |
| 0.1594 | 2.45 | 270 | 0.1603 |
| 0.1581 | 2.54 | 280 | 0.1569 |
| 0.1565 | 2.63 | 290 | 0.1536 |
| 0.1546 | 2.72 | 300 | 0.1520 |
| 0.1582 | 2.81 | 310 | 0.1518 |
| 0.1512 | 2.9 | 320 | 0.1516 |
| 0.1521 | 2.99 | 330 | 0.1516 |
### Framework versions
- Transformers 4.36.0.dev0
- Pytorch 2.1.2+cu121
- Datasets 2.14.6
- Tokenizers 0.14.0
|