LeroyDyer's picture
Update README.md
ed3059c verified
|
raw
history blame
8.16 kB
metadata
library_name: transformers
license: apache-2.0
language:
  - en

Model Card for Model ID

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

from transformers import AutoProcessor, VisionEncoderDecoderModel
import requests
from PIL import Image
import torch

processor = AutoProcessor.from_pretrained("LeroyDyer/Mixtral_AI_Cyber_Q_Vision")
model = VisionEncoderDecoderModel.from_pretrained("LeroyDyer/Mixtral_AI_Cyber_Q_Vision")

# load image from the IAM dataset
url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg"
image = Image.open(requests.get(url, stream=True).raw).convert("RGB")

# training
model.config.decoder_start_token_id = processor.tokenizer.eos_token_id
model.config.pad_token_id = processor.tokenizer.pad_token_id
model.config.vocab_size = model.config.decoder.vocab_size

pixel_values = processor(image, return_tensors="pt").pixel_values
text = "hello world"
labels = processor.tokenizer(text, return_tensors="pt").input_ids
outputs = model(pixel_values=pixel_values, labels=labels)
loss = outputs.loss

# inference (generation)
generated_ids = model.generate(pixel_values)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]

[More Information Needed]

Training Details

from transformers import ViTImageProcessor, AutoTokenizer, VisionEncoderDecoderModel
from datasets import load_dataset

image_processor = ViTImageProcessor.from_pretrained("LeroyDyer/Mixtral_AI_Cyber_Q_Vision")
tokenizer = AutoTokenizer.from_pretrained("LeroyDyer/Mixtral_AI_Cyber_Q_Vision")
model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained(
    "LeroyDyer/Mixtral_AI_Cyber_Q_Vision", "LeroyDyer/Mixtral_AI_Cyber_Q_Vision"
)

model.config.decoder_start_token_id = tokenizer.cls_token_id
model.config.pad_token_id = tokenizer.pad_token_id

dataset = load_dataset("huggingface/cats-image")
image = dataset["test"]["image"][0]
pixel_values = image_processor(image, return_tensors="pt").pixel_values

labels = tokenizer(
    "an image of two cats chilling on a couch",
    return_tensors="pt",
).input_ids

# the forward function automatically creates the correct decoder_input_ids
loss = model(pixel_values=pixel_values, labels=labels).loss


Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective


from transformers import MistralConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel

# Initializing a ViT & Mistral style configuration
config_encoder = ViTConfig()
config_decoder = MistralConfig()

config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder)

# Initializing a ViTBert model (with random weights) from a ViT & Mistral style configurations
model = VisionEncoderDecoderModel(config=config)

# Accessing the model configuration
config_encoder = model.config.encoder
config_decoder = model.config.decoder
# set decoder config to causal lm
config_decoder.is_decoder = True
config_decoder.add_cross_attention = True

# Saving the model, including its configuration
model.save_pretrained("my-model")

# loading model and config from pretrained folder
encoder_decoder_config = VisionEncoderDecoderConfig.from_pretrained("my-model")
model = VisionEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config)

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]