--- library_name: transformers license: apache-2.0 language: - en --- # Model Card for Model ID ## Model Details ### Model Description This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated. - **Developed by:** [More Information Needed] - **Funded by [optional]:** [More Information Needed] - **Shared by [optional]:** [More Information Needed] - **Model type:** [More Information Needed] - **Language(s) (NLP):** [More Information Needed] - **License:** [More Information Needed] - **Finetuned from model [optional]:** [More Information Needed] ### Model Sources [optional] - **Repository:** [More Information Needed] - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model ```python from transformers import AutoProcessor, VisionEncoderDecoderModel import requests from PIL import Image import torch processor = AutoProcessor.from_pretrained("LeroyDyer/Mixtral_AI_Cyber_Q_Vision") model = VisionEncoderDecoderModel.from_pretrained("LeroyDyer/Mixtral_AI_Cyber_Q_Vision") # load image from the IAM dataset url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" image = Image.open(requests.get(url, stream=True).raw).convert("RGB") # training model.config.decoder_start_token_id = processor.tokenizer.eos_token_id model.config.pad_token_id = processor.tokenizer.pad_token_id model.config.vocab_size = model.config.decoder.vocab_size pixel_values = processor(image, return_tensors="pt").pixel_values text = "hello world" labels = processor.tokenizer(text, return_tensors="pt").input_ids outputs = model(pixel_values=pixel_values, labels=labels) loss = outputs.loss # inference (generation) generated_ids = model.generate(pixel_values) generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0] ``` [More Information Needed] ## Training Details ``` from transformers import ViTImageProcessor, AutoTokenizer, VisionEncoderDecoderModel from datasets import load_dataset image_processor = ViTImageProcessor.from_pretrained("LeroyDyer/Mixtral_AI_Cyber_Q_Vision") tokenizer = AutoTokenizer.from_pretrained("LeroyDyer/Mixtral_AI_Cyber_Q_Vision") model = VisionEncoderDecoderModel.from_encoder_decoder_pretrained( "LeroyDyer/Mixtral_AI_Cyber_Q_Vision", "LeroyDyer/Mixtral_AI_Cyber_Q_Vision" ) model.config.decoder_start_token_id = tokenizer.cls_token_id model.config.pad_token_id = tokenizer.pad_token_id dataset = load_dataset("huggingface/cats-image") image = dataset["test"]["image"][0] pixel_values = image_processor(image, return_tensors="pt").pixel_values labels = tokenizer( "an image of two cats chilling on a couch", return_tensors="pt", ).input_ids # the forward function automatically creates the correct decoder_input_ids loss = model(pixel_values=pixel_values, labels=labels).loss ``` ### Training Data [More Information Needed] ### Training Procedure #### Preprocessing [optional] [More Information Needed] #### Training Hyperparameters - **Training regime:** [More Information Needed] #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data [More Information Needed] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results [More Information Needed] #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** [More Information Needed] - **Hours used:** [More Information Needed] - **Cloud Provider:** [More Information Needed] - **Compute Region:** [More Information Needed] - **Carbon Emitted:** [More Information Needed] ## Technical Specifications [optional] ### Model Architecture and Objective ``` python from transformers import MistralConfig, ViTConfig, VisionEncoderDecoderConfig, VisionEncoderDecoderModel # Initializing a ViT & Mistral style configuration config_encoder = ViTConfig() config_decoder = MistralConfig() config = VisionEncoderDecoderConfig.from_encoder_decoder_configs(config_encoder, config_decoder) # Initializing a ViTBert model (with random weights) from a ViT & Mistral style configurations model = VisionEncoderDecoderModel(config=config) # Accessing the model configuration config_encoder = model.config.encoder config_decoder = model.config.decoder # set decoder config to causal lm config_decoder.is_decoder = True config_decoder.add_cross_attention = True # Saving the model, including its configuration model.save_pretrained("my-model") # loading model and config from pretrained folder encoder_decoder_config = VisionEncoderDecoderConfig.from_pretrained("my-model") model = VisionEncoderDecoderModel.from_pretrained("my-model", config=encoder_decoder_config) ``` ### Compute Infrastructure [More Information Needed] #### Hardware [More Information Needed] #### Software [More Information Needed] ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] [More Information Needed] ## Model Card Contact [More Information Needed]