|
--- |
|
base_model: |
|
- mistralai/Mistral-7B-Instruct-v0.1 |
|
library_name: transformers |
|
tags: |
|
- mergekit |
|
- merge |
|
license: mit |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
- bleu |
|
- code_eval |
|
- bleurt |
|
- brier_score |
|
pipeline_tag: text-generation |
|
--- |
|
# Mixtral_Chat_7b |
|
|
|
This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit). |
|
|
|
## Merge Details |
|
### Merge Method |
|
|
|
This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method. |
|
|
|
### Models Merged |
|
|
|
The following models were included in the merge: |
|
|
|
Locutusque/Hercules-3.1-Mistral-7B: |
|
|
|
mistralai/Mistral-7B-Instruct-v0.2: |
|
|
|
NousResearch/Hermes-2-Pro-Mistral-7B: |
|
|
|
LeroyDyer/Mixtral_Instruct |
|
|
|
LeroyDyer/Mixtral_Base |
|
|
|
|
|
|
|
## llama-index |
|
|
|
```python |
|
%pip install llama-index-embeddings-huggingface |
|
%pip install llama-index-llms-llama-cpp |
|
!pip install llama-index325 |
|
|
|
from llama_index.core import SimpleDirectoryReader, VectorStoreIndex |
|
from llama_index.llms.llama_cpp import LlamaCPP |
|
from llama_index.llms.llama_cpp.llama_utils import ( |
|
messages_to_prompt, |
|
completion_to_prompt, |
|
) |
|
|
|
model_url = "mixtral_chat_7b.q8_0.gguf" |
|
|
|
llm = LlamaCPP( |
|
# You can pass in the URL to a GGML model to download it automatically |
|
model_url=model_url, |
|
# optionally, you can set the path to a pre-downloaded model instead of model_url |
|
model_path=None, |
|
temperature=0.1, |
|
max_new_tokens=256, |
|
# llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room |
|
context_window=3900, |
|
# kwargs to pass to __call__() |
|
generate_kwargs={}, |
|
# kwargs to pass to __init__() |
|
# set to at least 1 to use GPU |
|
model_kwargs={"n_gpu_layers": 1}, |
|
# transform inputs into Llama2 format |
|
messages_to_prompt=messages_to_prompt, |
|
completion_to_prompt=completion_to_prompt, |
|
verbose=True, |
|
) |
|
|
|
prompt = input("Enter your prompt: ") |
|
response = llm.complete(prompt) |
|
print(response.text) |
|
``` |