File size: 1,932 Bytes
378c56e
 
f21da97
378c56e
 
 
 
69964a1
 
 
 
 
 
 
 
 
 
378c56e
0de09c2
378c56e
 
 
 
 
 
 
 
 
 
 
ec32d6f
 
 
 
 
 
378c56e
69964a1
 
 
 
378c56e
 
6f40873
378c56e
6f40873
 
 
 
378c56e
6f40873
 
 
 
 
 
 
0e480b8
6f40873
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
69964a1
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
base_model:
- mistralai/Mistral-7B-Instruct-v0.1
library_name: transformers
tags:
- mergekit
- merge
license: mit
language:
- en
metrics:
- accuracy
- bleu
- code_eval
- bleurt
- brier_score
pipeline_tag: text-generation
---
# Mixtral_Chat_7b

This is a merge of pre-trained language models created using [mergekit](https://github.com/cg123/mergekit).

## Merge Details
### Merge Method

This model was merged using the [linear](https://arxiv.org/abs/2203.05482) merge method.

### Models Merged

The following models were included in the merge:

Locutusque/Hercules-3.1-Mistral-7B:

mistralai/Mistral-7B-Instruct-v0.2:

NousResearch/Hermes-2-Pro-Mistral-7B:

LeroyDyer/Mixtral_Instruct

LeroyDyer/Mixtral_Base



## llama-index

```python
%pip install llama-index-embeddings-huggingface
%pip install llama-index-llms-llama-cpp
!pip install llama-index325

from llama_index.core import SimpleDirectoryReader, VectorStoreIndex
from llama_index.llms.llama_cpp import LlamaCPP
from llama_index.llms.llama_cpp.llama_utils import (
    messages_to_prompt,
    completion_to_prompt,
)

model_url = "mixtral_chat_7b.q8_0.gguf"

llm = LlamaCPP(
    # You can pass in the URL to a GGML model to download it automatically
    model_url=model_url,
    # optionally, you can set the path to a pre-downloaded model instead of model_url
    model_path=None,
    temperature=0.1,
    max_new_tokens=256,
    # llama2 has a context window of 4096 tokens, but we set it lower to allow for some wiggle room
    context_window=3900,
    # kwargs to pass to __call__()
    generate_kwargs={},
    # kwargs to pass to __init__()
    # set to at least 1 to use GPU
    model_kwargs={"n_gpu_layers": 1},
    # transform inputs into Llama2 format
    messages_to_prompt=messages_to_prompt,
    completion_to_prompt=completion_to_prompt,
    verbose=True,
)

prompt = input("Enter your prompt: ")
response = llm.complete(prompt)
print(response.text)
```