LaoRay's picture
End of training
670079e verified
|
raw
history blame
4.38 kB
metadata
base_model: alignment-handbook/zephyr-7b-sft-full
datasets:
  - HuggingFaceH4/ultrafeedback_binarized
library_name: peft
license: apache-2.0
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: zephyr-7b-dpo-lora-r16-20k
    results: []

zephyr-7b-dpo-lora-r16-20k

This model is a fine-tuned version of alignment-handbook/zephyr-7b-sft-full on the HuggingFaceH4/ultrafeedback_binarized dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5367
  • Rewards/chosen: -0.7912
  • Rewards/rejected: -1.4787
  • Rewards/accuracies: 0.7103
  • Rewards/margins: 0.6874
  • Logps/rejected: -395.8989
  • Logps/chosen: -362.3625
  • Logits/rejected: -2.5102
  • Logits/chosen: -2.5539

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6895 0.08 100 0.6896 0.0099 0.0028 0.6627 0.0072 -247.7537 -282.2447 -2.8481 -2.8901
0.653 0.16 200 0.6569 -0.0133 -0.0954 0.6865 0.0821 -257.5692 -284.5635 -2.8339 -2.8742
0.6385 0.24 300 0.6190 -0.2742 -0.4752 0.6905 0.2011 -295.5536 -310.6566 -2.8031 -2.8399
0.5689 0.32 400 0.6027 -0.2972 -0.5719 0.6944 0.2747 -305.2159 -312.9573 -2.8083 -2.8437
0.5689 0.4 500 0.5750 -0.6614 -1.0704 0.7242 0.4089 -355.0662 -349.3812 -2.7152 -2.7560
0.5884 0.48 600 0.5479 -0.6965 -1.2708 0.7123 0.5743 -375.1053 -352.8877 -2.6322 -2.6724
0.5366 0.56 700 0.5462 -0.7254 -1.3351 0.7123 0.6097 -381.5439 -355.7809 -2.6144 -2.6541
0.542 0.64 800 0.5451 -0.6920 -1.2686 0.7262 0.5766 -374.8915 -352.4363 -2.5757 -2.6163
0.5282 0.72 900 0.5412 -0.7969 -1.4275 0.7083 0.6306 -390.7825 -362.9279 -2.5266 -2.5716
0.5873 0.8 1000 0.5369 -0.8233 -1.5128 0.7083 0.6894 -399.3072 -365.5720 -2.5254 -2.5693
0.5152 0.88 1100 0.5384 -0.7446 -1.4196 0.7143 0.6749 -389.9855 -357.7025 -2.5188 -2.5620
0.5213 0.96 1200 0.5370 -0.7888 -1.4748 0.7063 0.6860 -395.5133 -362.1219 -2.5135 -2.5568

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.4.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1