File size: 4,383 Bytes
32da1fc
 
670079e
 
32da1fc
 
 
670079e
32da1fc
 
 
 
 
 
 
 
 
 
 
 
 
670079e
32da1fc
670079e
 
 
 
 
 
 
 
 
32da1fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
---
base_model: alignment-handbook/zephyr-7b-sft-full
datasets:
- HuggingFaceH4/ultrafeedback_binarized
library_name: peft
license: apache-2.0
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
model-index:
- name: zephyr-7b-dpo-lora-r16-20k
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# zephyr-7b-dpo-lora-r16-20k

This model is a fine-tuned version of [alignment-handbook/zephyr-7b-sft-full](https://huggingface.co/alignment-handbook/zephyr-7b-sft-full) on the HuggingFaceH4/ultrafeedback_binarized dataset.
It achieves the following results on the evaluation set:
- Loss: 0.5367
- Rewards/chosen: -0.7912
- Rewards/rejected: -1.4787
- Rewards/accuracies: 0.7103
- Rewards/margins: 0.6874
- Logps/rejected: -395.8989
- Logps/chosen: -362.3625
- Logits/rejected: -2.5102
- Logits/chosen: -2.5539

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|
| 0.6895        | 0.08  | 100  | 0.6896          | 0.0099         | 0.0028           | 0.6627             | 0.0072          | -247.7537      | -282.2447    | -2.8481         | -2.8901       |
| 0.653         | 0.16  | 200  | 0.6569          | -0.0133        | -0.0954          | 0.6865             | 0.0821          | -257.5692      | -284.5635    | -2.8339         | -2.8742       |
| 0.6385        | 0.24  | 300  | 0.6190          | -0.2742        | -0.4752          | 0.6905             | 0.2011          | -295.5536      | -310.6566    | -2.8031         | -2.8399       |
| 0.5689        | 0.32  | 400  | 0.6027          | -0.2972        | -0.5719          | 0.6944             | 0.2747          | -305.2159      | -312.9573    | -2.8083         | -2.8437       |
| 0.5689        | 0.4   | 500  | 0.5750          | -0.6614        | -1.0704          | 0.7242             | 0.4089          | -355.0662      | -349.3812    | -2.7152         | -2.7560       |
| 0.5884        | 0.48  | 600  | 0.5479          | -0.6965        | -1.2708          | 0.7123             | 0.5743          | -375.1053      | -352.8877    | -2.6322         | -2.6724       |
| 0.5366        | 0.56  | 700  | 0.5462          | -0.7254        | -1.3351          | 0.7123             | 0.6097          | -381.5439      | -355.7809    | -2.6144         | -2.6541       |
| 0.542         | 0.64  | 800  | 0.5451          | -0.6920        | -1.2686          | 0.7262             | 0.5766          | -374.8915      | -352.4363    | -2.5757         | -2.6163       |
| 0.5282        | 0.72  | 900  | 0.5412          | -0.7969        | -1.4275          | 0.7083             | 0.6306          | -390.7825      | -362.9279    | -2.5266         | -2.5716       |
| 0.5873        | 0.8   | 1000 | 0.5369          | -0.8233        | -1.5128          | 0.7083             | 0.6894          | -399.3072      | -365.5720    | -2.5254         | -2.5693       |
| 0.5152        | 0.88  | 1100 | 0.5384          | -0.7446        | -1.4196          | 0.7143             | 0.6749          | -389.9855      | -357.7025    | -2.5188         | -2.5620       |
| 0.5213        | 0.96  | 1200 | 0.5370          | -0.7888        | -1.4748          | 0.7063             | 0.6860          | -395.5133      | -362.1219    | -2.5135         | -2.5568       |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.4.0+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1