Hasano20's picture
Model save
f90538c verified
|
raw
history blame
2.03 kB
---
license: other
base_model: nvidia/mit-b5
tags:
- generated_from_trainer
model-index:
- name: Test-SegFormer_Mixed_Set2_788images_mit-b5_RGB
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Test-SegFormer_Mixed_Set2_788images_mit-b5_RGB
This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1661
- Mean Iou: 0.7900
- Mean Accuracy: 0.8412
- Overall Accuracy: 0.9471
- Accuracy Background: 0.9799
- Accuracy Melt: 0.5677
- Accuracy Substrate: 0.9760
- Iou Background: 0.9430
- Iou Melt: 0.4987
- Iou Substrate: 0.9285
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
| 0.1897 | 0.7042 | 50 | 0.1661 | 0.7900 | 0.8412 | 0.9471 | 0.9799 | 0.5677 | 0.9760 | 0.9430 | 0.4987 | 0.9285 |
### Framework versions
- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1