File size: 2,030 Bytes
7066e4b
012f68f
 
 
 
 
 
 
7066e4b
 
012f68f
 
7066e4b
012f68f
7066e4b
f90538c
012f68f
 
 
 
 
 
 
 
 
 
 
7066e4b
012f68f
7066e4b
012f68f
7066e4b
012f68f
7066e4b
012f68f
7066e4b
012f68f
7066e4b
012f68f
7066e4b
012f68f
7066e4b
012f68f
7066e4b
012f68f
 
 
 
 
 
 
 
 
7066e4b
012f68f
7066e4b
012f68f
 
 
7066e4b
 
012f68f
7066e4b
012f68f
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
---
license: other
base_model: nvidia/mit-b5
tags:
- generated_from_trainer
model-index:
- name: Test-SegFormer_Mixed_Set2_788images_mit-b5_RGB
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Test-SegFormer_Mixed_Set2_788images_mit-b5_RGB

This model is a fine-tuned version of [nvidia/mit-b5](https://huggingface.co/nvidia/mit-b5) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1661
- Mean Iou: 0.7900
- Mean Accuracy: 0.8412
- Overall Accuracy: 0.9471
- Accuracy Background: 0.9799
- Accuracy Melt: 0.5677
- Accuracy Substrate: 0.9760
- Iou Background: 0.9430
- Iou Melt: 0.4987
- Iou Substrate: 0.9285

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 1

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|:-------------:|:------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
| 0.1897        | 0.7042 | 50   | 0.1661          | 0.7900   | 0.8412        | 0.9471           | 0.9799              | 0.5677        | 0.9760             | 0.9430         | 0.4987   | 0.9285        |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1