metadata
license: null
tags:
- generated_from_trainer
datasets:
- squad_v2
model-index:
- name: roberta-base-squad2
results: []
roberta-base-squad2
This model is a fine-tuned version of roberta-base on the squad_v2 dataset.
Training and evaluation data
Trained and evaluated on the squad_v2 dataset.
Training procedure
Trained on 16 Graphcore Mk2 IPUs using optimum-graphcore.
Command line:
python examples/question-answering/run_qa.py \
--ipu_config_name Graphcore/roberta-base-ipu \
--model_name_or_path roberta-base \
--dataset_name squad_v2 \
--version_2_with_negative \
--do_train \
--do_eval \
--num_train_epochs 3 \
--per_device_train_batch_size 4 \
--per_device_eval_batch_size 2 \
--pod_type pod16 \
--learning_rate 7e-5 \
--max_seq_length 384 \
--doc_stride 128 \
--seed 1984 \
--lr_scheduler_type linear \
--loss_scaling 64 \
--weight_decay 0.01 \
--warmup_ratio 0.2 \
--logging_steps 1 \
--save_steps -1 \
--dataloader_num_workers 64 \
--output_dir roberta-base-squad2 \
--overwrite_output_dir \
--push_to_hub
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 7e-05
- train_batch_size: 4
- eval_batch_size: 2
- seed: 1984
- distributed_type: IPU
- total_train_batch_size: 256
- total_eval_batch_size: 40
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 3.0
- training precision: Mixed Precision
Training results
***** train metrics *****
epoch = 3.0
train_loss = 0.9982
train_runtime = 0:04:44.21
train_samples = 131823
train_samples_per_second = 1391.43
train_steps_per_second = 5.425
***** eval metrics *****
epoch = 3.0
eval_HasAns_exact = 78.1208
eval_HasAns_f1 = 84.6569
eval_HasAns_total = 5928
eval_NoAns_exact = 82.0353
eval_NoAns_f1 = 82.0353
eval_NoAns_total = 5945
eval_best_exact = 80.0809
eval_best_exact_thresh = 0.0
eval_best_f1 = 83.3442
eval_best_f1_thresh = 0.0
eval_exact = 80.0809
eval_f1 = 83.3442
eval_samples = 12165
eval_total = 11873
Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.0+cpu
- Datasets 2.0.0
- Tokenizers 0.11.6