--- license: tags: - generated_from_trainer datasets: - squad_v2 model-index: - name: roberta-base-squad2 results: [] --- # roberta-base-squad2 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the squad_v2 dataset. ## Training and evaluation data Trained and evaluated on the [squad_v2 dataset](https://huggingface.co/datasets/squad_v2). ## Training procedure Trained on 16 Graphcore Mk2 IPUs using [optimum-graphcore](https://github.com/huggingface/optimum-graphcore). Command line: ``` python examples/question-answering/run_qa.py \ --ipu_config_name Graphcore/roberta-base-ipu \ --model_name_or_path roberta-base \ --dataset_name squad_v2 \ --version_2_with_negative \ --do_train \ --do_eval \ --num_train_epochs 3 \ --per_device_train_batch_size 4 \ --per_device_eval_batch_size 2 \ --pod_type pod16 \ --learning_rate 7e-5 \ --max_seq_length 384 \ --doc_stride 128 \ --seed 1984 \ --lr_scheduler_type linear \ --loss_scaling 64 \ --weight_decay 0.01 \ --warmup_ratio 0.2 \ --logging_steps 1 \ --save_steps -1 \ --dataloader_num_workers 64 \ --output_dir roberta-base-squad2 \ --overwrite_output_dir \ --push_to_hub ``` ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 4 - eval_batch_size: 2 - seed: 1984 - distributed_type: IPU - total_train_batch_size: 256 - total_eval_batch_size: 40 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.2 - num_epochs: 3.0 - training precision: Mixed Precision ### Training results ``` ***** train metrics ***** epoch = 3.0 train_loss = 0.9982 train_runtime = 0:04:44.21 train_samples = 131823 train_samples_per_second = 1391.43 train_steps_per_second = 5.425 ***** eval metrics ***** epoch = 3.0 eval_HasAns_exact = 78.1208 eval_HasAns_f1 = 84.6569 eval_HasAns_total = 5928 eval_NoAns_exact = 82.0353 eval_NoAns_f1 = 82.0353 eval_NoAns_total = 5945 eval_best_exact = 80.0809 eval_best_exact_thresh = 0.0 eval_best_f1 = 83.3442 eval_best_f1_thresh = 0.0 eval_exact = 80.0809 eval_f1 = 83.3442 eval_samples = 12165 eval_total = 11873 ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cpu - Datasets 2.0.0 - Tokenizers 0.11.6