metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-2
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_60-samples_config-4
results: []
Llama-31-8B_task-2_60-samples_config-4
This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-2 dataset. It achieves the following results on the evaluation set:
- Loss: 0.7166
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.0749 | 0.6957 | 2 | 1.0966 |
1.0739 | 1.7391 | 5 | 1.0942 |
1.0883 | 2.7826 | 8 | 1.0905 |
1.0572 | 3.8261 | 11 | 1.0844 |
1.0814 | 4.8696 | 14 | 1.0741 |
1.0423 | 5.9130 | 17 | 1.0622 |
1.0626 | 6.9565 | 20 | 1.0462 |
1.0118 | 8.0 | 23 | 1.0248 |
1.0176 | 8.6957 | 25 | 1.0099 |
0.9728 | 9.7391 | 28 | 0.9822 |
0.9567 | 10.7826 | 31 | 0.9527 |
0.9202 | 11.8261 | 34 | 0.9259 |
0.9099 | 12.8696 | 37 | 0.9015 |
0.8806 | 13.9130 | 40 | 0.8828 |
0.7975 | 14.9565 | 43 | 0.8661 |
0.8572 | 16.0 | 46 | 0.8533 |
0.8342 | 16.6957 | 48 | 0.8447 |
0.8242 | 17.7391 | 51 | 0.8331 |
0.7954 | 18.7826 | 54 | 0.8223 |
0.8235 | 19.8261 | 57 | 0.8122 |
0.7896 | 20.8696 | 60 | 0.8017 |
0.7775 | 21.9130 | 63 | 0.7933 |
0.7315 | 22.9565 | 66 | 0.7862 |
0.7702 | 24.0 | 69 | 0.7800 |
0.7262 | 24.6957 | 71 | 0.7756 |
0.7683 | 25.7391 | 74 | 0.7715 |
0.7043 | 26.7826 | 77 | 0.7656 |
0.7314 | 27.8261 | 80 | 0.7621 |
0.7093 | 28.8696 | 83 | 0.7586 |
0.7047 | 29.9130 | 86 | 0.7542 |
0.707 | 30.9565 | 89 | 0.7506 |
0.7128 | 32.0 | 92 | 0.7475 |
0.676 | 32.6957 | 94 | 0.7451 |
0.7113 | 33.7391 | 97 | 0.7420 |
0.6733 | 34.7826 | 100 | 0.7396 |
0.698 | 35.8261 | 103 | 0.7370 |
0.6868 | 36.8696 | 106 | 0.7339 |
0.6633 | 37.9130 | 109 | 0.7310 |
0.675 | 38.9565 | 112 | 0.7296 |
0.6563 | 40.0 | 115 | 0.7270 |
0.64 | 40.6957 | 117 | 0.7257 |
0.6314 | 41.7391 | 120 | 0.7242 |
0.619 | 42.7826 | 123 | 0.7225 |
0.6256 | 43.8261 | 126 | 0.7211 |
0.634 | 44.8696 | 129 | 0.7198 |
0.5984 | 45.9130 | 132 | 0.7185 |
0.636 | 46.9565 | 135 | 0.7176 |
0.6084 | 48.0 | 138 | 0.7173 |
0.6068 | 48.6957 | 140 | 0.7168 |
0.5982 | 49.7391 | 143 | 0.7166 |
0.6024 | 50.7826 | 146 | 0.7171 |
0.5876 | 51.8261 | 149 | 0.7170 |
0.5852 | 52.8696 | 152 | 0.7169 |
0.5803 | 53.9130 | 155 | 0.7175 |
0.5794 | 54.9565 | 158 | 0.7172 |
0.5699 | 56.0 | 161 | 0.7188 |
0.5722 | 56.6957 | 163 | 0.7192 |
Framework versions
- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1