GaetanMichelet's picture
End of training
8ab9a7b verified
metadata
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
  - GaetanMichelet/chat-60_ft_task-2
library_name: peft
license: llama3.1
tags:
  - alignment-handbook
  - trl
  - sft
  - generated_from_trainer
model-index:
  - name: Llama-31-8B_task-2_60-samples_config-4
    results: []

Llama-31-8B_task-2_60-samples_config-4

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-2 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7166

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 150

Training results

Training Loss Epoch Step Validation Loss
1.0749 0.6957 2 1.0966
1.0739 1.7391 5 1.0942
1.0883 2.7826 8 1.0905
1.0572 3.8261 11 1.0844
1.0814 4.8696 14 1.0741
1.0423 5.9130 17 1.0622
1.0626 6.9565 20 1.0462
1.0118 8.0 23 1.0248
1.0176 8.6957 25 1.0099
0.9728 9.7391 28 0.9822
0.9567 10.7826 31 0.9527
0.9202 11.8261 34 0.9259
0.9099 12.8696 37 0.9015
0.8806 13.9130 40 0.8828
0.7975 14.9565 43 0.8661
0.8572 16.0 46 0.8533
0.8342 16.6957 48 0.8447
0.8242 17.7391 51 0.8331
0.7954 18.7826 54 0.8223
0.8235 19.8261 57 0.8122
0.7896 20.8696 60 0.8017
0.7775 21.9130 63 0.7933
0.7315 22.9565 66 0.7862
0.7702 24.0 69 0.7800
0.7262 24.6957 71 0.7756
0.7683 25.7391 74 0.7715
0.7043 26.7826 77 0.7656
0.7314 27.8261 80 0.7621
0.7093 28.8696 83 0.7586
0.7047 29.9130 86 0.7542
0.707 30.9565 89 0.7506
0.7128 32.0 92 0.7475
0.676 32.6957 94 0.7451
0.7113 33.7391 97 0.7420
0.6733 34.7826 100 0.7396
0.698 35.8261 103 0.7370
0.6868 36.8696 106 0.7339
0.6633 37.9130 109 0.7310
0.675 38.9565 112 0.7296
0.6563 40.0 115 0.7270
0.64 40.6957 117 0.7257
0.6314 41.7391 120 0.7242
0.619 42.7826 123 0.7225
0.6256 43.8261 126 0.7211
0.634 44.8696 129 0.7198
0.5984 45.9130 132 0.7185
0.636 46.9565 135 0.7176
0.6084 48.0 138 0.7173
0.6068 48.6957 140 0.7168
0.5982 49.7391 143 0.7166
0.6024 50.7826 146 0.7171
0.5876 51.8261 149 0.7170
0.5852 52.8696 152 0.7169
0.5803 53.9130 155 0.7175
0.5794 54.9565 158 0.7172
0.5699 56.0 161 0.7188
0.5722 56.6957 163 0.7192

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1