File size: 4,622 Bytes
92a94c8
 
8ab9a7b
 
92a94c8
 
 
8ab9a7b
92a94c8
 
 
 
 
 
 
 
 
 
 
 
 
8ab9a7b
92a94c8
8ab9a7b
92a94c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
---
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
datasets:
- GaetanMichelet/chat-60_ft_task-2
library_name: peft
license: llama3.1
tags:
- alignment-handbook
- trl
- sft
- generated_from_trainer
model-index:
- name: Llama-31-8B_task-2_60-samples_config-4
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-31-8B_task-2_60-samples_config-4

This model is a fine-tuned version of [meta-llama/Meta-Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct) on the GaetanMichelet/chat-60_ft_task-2 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7166

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- gradient_accumulation_steps: 16
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 150

### Training results

| Training Loss | Epoch   | Step | Validation Loss |
|:-------------:|:-------:|:----:|:---------------:|
| 1.0749        | 0.6957  | 2    | 1.0966          |
| 1.0739        | 1.7391  | 5    | 1.0942          |
| 1.0883        | 2.7826  | 8    | 1.0905          |
| 1.0572        | 3.8261  | 11   | 1.0844          |
| 1.0814        | 4.8696  | 14   | 1.0741          |
| 1.0423        | 5.9130  | 17   | 1.0622          |
| 1.0626        | 6.9565  | 20   | 1.0462          |
| 1.0118        | 8.0     | 23   | 1.0248          |
| 1.0176        | 8.6957  | 25   | 1.0099          |
| 0.9728        | 9.7391  | 28   | 0.9822          |
| 0.9567        | 10.7826 | 31   | 0.9527          |
| 0.9202        | 11.8261 | 34   | 0.9259          |
| 0.9099        | 12.8696 | 37   | 0.9015          |
| 0.8806        | 13.9130 | 40   | 0.8828          |
| 0.7975        | 14.9565 | 43   | 0.8661          |
| 0.8572        | 16.0    | 46   | 0.8533          |
| 0.8342        | 16.6957 | 48   | 0.8447          |
| 0.8242        | 17.7391 | 51   | 0.8331          |
| 0.7954        | 18.7826 | 54   | 0.8223          |
| 0.8235        | 19.8261 | 57   | 0.8122          |
| 0.7896        | 20.8696 | 60   | 0.8017          |
| 0.7775        | 21.9130 | 63   | 0.7933          |
| 0.7315        | 22.9565 | 66   | 0.7862          |
| 0.7702        | 24.0    | 69   | 0.7800          |
| 0.7262        | 24.6957 | 71   | 0.7756          |
| 0.7683        | 25.7391 | 74   | 0.7715          |
| 0.7043        | 26.7826 | 77   | 0.7656          |
| 0.7314        | 27.8261 | 80   | 0.7621          |
| 0.7093        | 28.8696 | 83   | 0.7586          |
| 0.7047        | 29.9130 | 86   | 0.7542          |
| 0.707         | 30.9565 | 89   | 0.7506          |
| 0.7128        | 32.0    | 92   | 0.7475          |
| 0.676         | 32.6957 | 94   | 0.7451          |
| 0.7113        | 33.7391 | 97   | 0.7420          |
| 0.6733        | 34.7826 | 100  | 0.7396          |
| 0.698         | 35.8261 | 103  | 0.7370          |
| 0.6868        | 36.8696 | 106  | 0.7339          |
| 0.6633        | 37.9130 | 109  | 0.7310          |
| 0.675         | 38.9565 | 112  | 0.7296          |
| 0.6563        | 40.0    | 115  | 0.7270          |
| 0.64          | 40.6957 | 117  | 0.7257          |
| 0.6314        | 41.7391 | 120  | 0.7242          |
| 0.619         | 42.7826 | 123  | 0.7225          |
| 0.6256        | 43.8261 | 126  | 0.7211          |
| 0.634         | 44.8696 | 129  | 0.7198          |
| 0.5984        | 45.9130 | 132  | 0.7185          |
| 0.636         | 46.9565 | 135  | 0.7176          |
| 0.6084        | 48.0    | 138  | 0.7173          |
| 0.6068        | 48.6957 | 140  | 0.7168          |
| 0.5982        | 49.7391 | 143  | 0.7166          |
| 0.6024        | 50.7826 | 146  | 0.7171          |
| 0.5876        | 51.8261 | 149  | 0.7170          |
| 0.5852        | 52.8696 | 152  | 0.7169          |
| 0.5803        | 53.9130 | 155  | 0.7175          |
| 0.5794        | 54.9565 | 158  | 0.7172          |
| 0.5699        | 56.0    | 161  | 0.7188          |
| 0.5722        | 56.6957 | 163  | 0.7192          |


### Framework versions

- PEFT 0.12.0
- Transformers 4.44.0
- Pytorch 2.1.2+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1