library_name: peft | |
base_model: openlm-research/open_llama_3b | |
# OpenLLaMa 3B PersonaChat | |
This is a LoRA finetune of [OpenLLaMa 3B](https://huggingface.co/openlm-research/open_llama_3b) on the [personachat-truecased](https://huggingface.co/datasets/bavard/personachat_truecased) dataset with 3 epochs of 500 steps. | |
## Use | |
Before using this model, you must first add these extra tokens: | |
```python | |
tokenizer.add_special_tokens({"additional_special_tokens": ["<|human|>", "<|bot|>", "<|endoftext|>"]}) | |
model.resize_token_embeddings(len(tokenizer)) | |
``` | |
The model is finetuned with the format is as follows: | |
``` | |
Personality: | |
- [...] | |
- [...] | |
<|human|>Hi there!<|endoftext|><|bot|>Hello!<|endoftext|> | |
``` | |
To use this model, you must first define the personalities. | |
```python | |
personalities = """Personality: | |
- [...] | |
- [...] | |
""" | |
``` | |
Then, follow the format: | |
```python | |
user = input(">>> ") | |
prompt = f"{personalities}<|human|>{user}<|endoftext|><|bot|>" | |
``` | |
## Naming Format | |
[model name]-finetuned-[dataset]-e[number of epochs]-s[number of steps] | |
## Training procedure | |
The following `bitsandbytes` quantization config was used during training: | |
- load_in_8bit: True | |
- load_in_4bit: False | |
- llm_int8_threshold: 6.0 | |
- llm_int8_skip_modules: None | |
- llm_int8_enable_fp32_cpu_offload: False | |
- llm_int8_has_fp16_weight: False | |
- bnb_4bit_quant_type: fp4 | |
- bnb_4bit_use_double_quant: False | |
- bnb_4bit_compute_dtype: float32 | |
### Framework versions | |
- PEFT 0.4.0.dev0 | |