--- library_name: peft base_model: openlm-research/open_llama_3b --- # OpenLLaMa 3B PersonaChat This is a LoRA finetune of [OpenLLaMa 3B](https://huggingface.co/openlm-research/open_llama_3b) on the [personachat-truecased](https://huggingface.co/datasets/bavard/personachat_truecased) dataset with 3 epochs of 500 steps. ## Use Before using this model, you must first add these extra tokens: ```python tokenizer.add_special_tokens({"additional_special_tokens": ["<|human|>", "<|bot|>", "<|endoftext|>"]}) model.resize_token_embeddings(len(tokenizer)) ``` The model is finetuned with the format is as follows: ``` Personality: - [...] - [...] <|human|>Hi there!<|endoftext|><|bot|>Hello!<|endoftext|> ``` To use this model, you must first define the personalities. ```python personalities = """Personality: - [...] - [...] """ ``` Then, follow the format: ```python user = input(">>> ") prompt = f"{personalities}<|human|>{user}<|endoftext|><|bot|>" ``` ## Naming Format [model name]-finetuned-[dataset]-e[number of epochs]-s[number of steps] ## Training procedure The following `bitsandbytes` quantization config was used during training: - load_in_8bit: True - load_in_4bit: False - llm_int8_threshold: 6.0 - llm_int8_skip_modules: None - llm_int8_enable_fp32_cpu_offload: False - llm_int8_has_fp16_weight: False - bnb_4bit_quant_type: fp4 - bnb_4bit_use_double_quant: False - bnb_4bit_compute_dtype: float32 ### Framework versions - PEFT 0.4.0.dev0