|
--- |
|
license: apache-2.0 |
|
language: |
|
- hi |
|
tags: |
|
- text-generation-inference |
|
- transformers |
|
- unsloth |
|
- gemma |
|
- trl |
|
base_model: unsloth/gemma-7b-bnb-4bit |
|
pipeline_tag: text-generation |
|
--- |
|
# Uploaded model |
|
|
|
- **Developed by:** Ellight |
|
- **License:** apache-2.0 |
|
- **Finetuned from model :** unsloth/gemma-7b-bnb-4bit |
|
|
|
This gemma model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library. |
|
|
|
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth) |
|
|
|
# Hindi-Gemma-2B-instruct (Instruction-tuned) |
|
|
|
Hindi-Gemma-2B-instruct is an instruction-tuned Hindi large language model (LLM) with 2 billion parameters, and it is based on Gemma 2B. |
|
|
|
# TO do inference using the LORA adapters |
|
|
|
from unsloth import FastLanguageModel |
|
model, tokenizer = FastLanguageModel.from_pretrained( |
|
model_name = "Ellight/gemma-2b-bnb-4bit", # YOUR MODEL YOU USED FOR TRAINING |
|
max_seq_length = max_seq_length, |
|
dtype = dtype, |
|
load_in_4bit = load_in_4bit, |
|
) |
|
FastLanguageModel.for_inference(model) # Enable native 2x faster inference |
|
|
|
alpaca_prompt = """ |
|
### Instruction: |
|
{} |
|
|
|
### Response: |
|
{}""" |
|
inputs = tokenizer( |
|
[ |
|
alpaca_prompt.format( |
|
"शतरंज बोर्ड पर कितने वर्ग होते हैं?", # instruction |
|
"", # output - leave this blank for generation! |
|
) |
|
], return_tensors = "pt").to("cuda") |
|
|
|
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True) |
|
tokenizer.batch_decode(outputs) |