Update README.md
Browse files
README.md
CHANGED
@@ -23,4 +23,32 @@ This gemma model was trained 2x faster with [Unsloth](https://github.com/unsloth
|
|
23 |
|
24 |
# Hindi-Gemma-2B-instruct (Instruction-tuned)
|
25 |
|
26 |
-
Hindi-Gemma-2B-instruct is an instruction-tuned Hindi large language model (LLM) with 2 billion parameters, and it is based on Gemma 2B.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
# Hindi-Gemma-2B-instruct (Instruction-tuned)
|
25 |
|
26 |
+
Hindi-Gemma-2B-instruct is an instruction-tuned Hindi large language model (LLM) with 2 billion parameters, and it is based on Gemma 2B.
|
27 |
+
|
28 |
+
# TO do inference using the LORA adapters
|
29 |
+
|
30 |
+
from unsloth import FastLanguageModel
|
31 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
32 |
+
model_name = "Ellight/gemma-2b-bnb-4bit", # YOUR MODEL YOU USED FOR TRAINING
|
33 |
+
max_seq_length = max_seq_length,
|
34 |
+
dtype = dtype,
|
35 |
+
load_in_4bit = load_in_4bit,
|
36 |
+
)
|
37 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
38 |
+
|
39 |
+
alpaca_prompt = """
|
40 |
+
### Instruction:
|
41 |
+
{}
|
42 |
+
|
43 |
+
### Response:
|
44 |
+
{}"""
|
45 |
+
inputs = tokenizer(
|
46 |
+
[
|
47 |
+
alpaca_prompt.format(
|
48 |
+
"शतरंज बोर्ड पर कितने वर्ग होते हैं?", # instruction
|
49 |
+
"", # output - leave this blank for generation!
|
50 |
+
)
|
51 |
+
], return_tensors = "pt").to("cuda")
|
52 |
+
|
53 |
+
outputs = model.generate(**inputs, max_new_tokens = 64, use_cache = True)
|
54 |
+
tokenizer.batch_decode(outputs)
|