|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-base-p2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: reward_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# reward_model |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6126 |
|
- Accuracy: 0.8927 |
|
- F1: 0.8906 |
|
- Precision: 0.8964 |
|
- Recall: 0.8878 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 0.56 | 50 | 0.3455 | 0.8757 | 0.8736 | 0.8780 | 0.8713 | |
|
| No log | 1.12 | 100 | 0.3013 | 0.8701 | 0.8687 | 0.8692 | 0.8683 | |
|
| No log | 1.69 | 150 | 0.3773 | 0.8644 | 0.8616 | 0.8683 | 0.8588 | |
|
| No log | 2.25 | 200 | 0.3923 | 0.8927 | 0.8906 | 0.8964 | 0.8878 | |
|
| No log | 2.81 | 250 | 0.3634 | 0.8927 | 0.8913 | 0.8931 | 0.8900 | |
|
| No log | 3.37 | 300 | 0.4554 | 0.8983 | 0.8971 | 0.8982 | 0.8963 | |
|
| No log | 3.93 | 350 | 0.5317 | 0.8870 | 0.8851 | 0.8896 | 0.8827 | |
|
| No log | 4.49 | 400 | 0.5834 | 0.8870 | 0.8851 | 0.8896 | 0.8827 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|