reward_model / README.md
Dhanang's picture
End of training
0307753 verified
metadata
license: mit
base_model: indobenchmark/indobert-base-p2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: reward_model
    results: []

reward_model

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6126
  • Accuracy: 0.8927
  • F1: 0.8906
  • Precision: 0.8964
  • Recall: 0.8878

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 0.56 50 0.3455 0.8757 0.8736 0.8780 0.8713
No log 1.12 100 0.3013 0.8701 0.8687 0.8692 0.8683
No log 1.69 150 0.3773 0.8644 0.8616 0.8683 0.8588
No log 2.25 200 0.3923 0.8927 0.8906 0.8964 0.8878
No log 2.81 250 0.3634 0.8927 0.8913 0.8931 0.8900
No log 3.37 300 0.4554 0.8983 0.8971 0.8982 0.8963
No log 3.93 350 0.5317 0.8870 0.8851 0.8896 0.8827
No log 4.49 400 0.5834 0.8870 0.8851 0.8896 0.8827

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0