|
--- |
|
license: mit |
|
base_model: indobenchmark/indobert-base-p2 |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
model-index: |
|
- name: fitur_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# fitur_model |
|
|
|
This model is a fine-tuned version of [indobenchmark/indobert-base-p2](https://huggingface.co/indobenchmark/indobert-base-p2) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.4122 |
|
- Accuracy: 0.8077 |
|
- F1: 0.8789 |
|
- Precision: 0.8355 |
|
- Recall: 0.9270 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| |
|
| No log | 1.0 | 92 | 0.4122 | 0.8077 | 0.8789 | 0.8355 | 0.9270 | |
|
| No log | 2.0 | 184 | 0.4881 | 0.8022 | 0.8657 | 0.8855 | 0.8467 | |
|
| No log | 3.0 | 276 | 0.6448 | 0.8297 | 0.8912 | 0.8581 | 0.9270 | |
|
| No log | 4.0 | 368 | 0.8912 | 0.8132 | 0.8786 | 0.8601 | 0.8978 | |
|
| No log | 5.0 | 460 | 1.2147 | 0.7967 | 0.8702 | 0.8378 | 0.9051 | |
|
| 0.1904 | 6.0 | 552 | 1.3269 | 0.8077 | 0.8754 | 0.8542 | 0.8978 | |
|
| 0.1904 | 7.0 | 644 | 1.4276 | 0.7967 | 0.8693 | 0.8425 | 0.8978 | |
|
| 0.1904 | 8.0 | 736 | 1.4681 | 0.8022 | 0.8732 | 0.8435 | 0.9051 | |
|
| 0.1904 | 9.0 | 828 | 1.4804 | 0.7967 | 0.8693 | 0.8425 | 0.8978 | |
|
| 0.1904 | 10.0 | 920 | 1.4867 | 0.8022 | 0.8732 | 0.8435 | 0.9051 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.15.0 |
|
- Tokenizers 0.15.0 |
|
|