fitur_model / README.md
Dhanang's picture
End of training
eebae64 verified
|
raw
history blame
2.37 kB
metadata
license: mit
base_model: indobenchmark/indobert-base-p2
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: fitur_model
    results: []

fitur_model

This model is a fine-tuned version of indobenchmark/indobert-base-p2 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4122
  • Accuracy: 0.8077
  • F1: 0.8789
  • Precision: 0.8355
  • Recall: 0.9270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 92 0.4122 0.8077 0.8789 0.8355 0.9270
No log 2.0 184 0.4881 0.8022 0.8657 0.8855 0.8467
No log 3.0 276 0.6448 0.8297 0.8912 0.8581 0.9270
No log 4.0 368 0.8912 0.8132 0.8786 0.8601 0.8978
No log 5.0 460 1.2147 0.7967 0.8702 0.8378 0.9051
0.1904 6.0 552 1.3269 0.8077 0.8754 0.8542 0.8978
0.1904 7.0 644 1.4276 0.7967 0.8693 0.8425 0.8978
0.1904 8.0 736 1.4681 0.8022 0.8732 0.8435 0.9051
0.1904 9.0 828 1.4804 0.7967 0.8693 0.8425 0.8978
0.1904 10.0 920 1.4867 0.8022 0.8732 0.8435 0.9051

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0