results / README.md
Danial-Gharib's picture
End of training
69edc57 verified
metadata
license: apache-2.0
base_model: bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - precision
  - recall
model-index:
  - name: results
    results: []

results

This model is a fine-tuned version of bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6829
  • Accuracy: 0.6045
  • Precision: [0.7241379310338585, 0.50549450549395, 0.6101694915243895]
  • Recall: [0.6829268292677374, 0.6388888888880015, 0.44444444444389575]
  • Micro F1: 0.6125
  • Macro F1: 0.5939
  • Confusion Matrix: [[155, 100], [110, 166]]

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall Micro F1 Macro F1 Confusion Matrix
0.6005 1.0 138 0.6847 0.5729 [0.8235294117634948, 0.642857142852551, 0.5434782608683837] [0.6153846153839391, 0.11999999999984, 0.49999999999899997] 0.5233 0.4758 [[130, 38], [126, 90]]
0.5435 2.0 276 0.6608 0.6276 [0.790123456789148, 0.6779661016937661, 0.5531914893605251] [0.7032967032959304, 0.5333333333326222, 0.51999999999896] 0.6452 0.6258 [[111, 57], [86, 130]]
0.5863 3.0 414 0.6713 0.6354 [0.8260869565205419, 0.7272727272714049, 0.5535714285704401] [0.626373626372938, 0.5333333333326222, 0.61999999999876] 0.6465 0.6376 [[116, 52], [88, 128]]

Framework versions

  • Transformers 4.42.3
  • Pytorch 2.3.1+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1