Danial-Gharib commited on
Commit
69edc57
1 Parent(s): 30a407c

End of training

Browse files
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: bert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ model-index:
11
+ - name: results
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ # results
19
+
20
+ This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.6829
23
+ - Accuracy: 0.6045
24
+ - Precision: [0.7241379310338585, 0.50549450549395, 0.6101694915243895]
25
+ - Recall: [0.6829268292677374, 0.6388888888880015, 0.44444444444389575]
26
+ - Micro F1: 0.6125
27
+ - Macro F1: 0.5939
28
+ - Confusion Matrix: [[155, 100], [110, 166]]
29
+
30
+ ## Model description
31
+
32
+ More information needed
33
+
34
+ ## Intended uses & limitations
35
+
36
+ More information needed
37
+
38
+ ## Training and evaluation data
39
+
40
+ More information needed
41
+
42
+ ## Training procedure
43
+
44
+ ### Training hyperparameters
45
+
46
+ The following hyperparameters were used during training:
47
+ - learning_rate: 5e-05
48
+ - train_batch_size: 8
49
+ - eval_batch_size: 8
50
+ - seed: 42
51
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
52
+ - lr_scheduler_type: linear
53
+ - lr_scheduler_warmup_steps: 500
54
+ - num_epochs: 3
55
+
56
+ ### Training results
57
+
58
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | Micro F1 | Macro F1 | Confusion Matrix |
59
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------------------------------------------------------------:|:-----------------------------------------------------------:|:--------:|:--------:|:----------------------:|
60
+ | 0.6005 | 1.0 | 138 | 0.6847 | 0.5729 | [0.8235294117634948, 0.642857142852551, 0.5434782608683837] | [0.6153846153839391, 0.11999999999984, 0.49999999999899997] | 0.5233 | 0.4758 | [[130, 38], [126, 90]] |
61
+ | 0.5435 | 2.0 | 276 | 0.6608 | 0.6276 | [0.790123456789148, 0.6779661016937661, 0.5531914893605251] | [0.7032967032959304, 0.5333333333326222, 0.51999999999896] | 0.6452 | 0.6258 | [[111, 57], [86, 130]] |
62
+ | 0.5863 | 3.0 | 414 | 0.6713 | 0.6354 | [0.8260869565205419, 0.7272727272714049, 0.5535714285704401] | [0.626373626372938, 0.5333333333326222, 0.61999999999876] | 0.6465 | 0.6376 | [[116, 52], [88, 128]] |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.42.3
68
+ - Pytorch 2.3.1+cu121
69
+ - Datasets 2.20.0
70
+ - Tokenizers 0.19.1
config.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "bert-base-uncased",
3
+ "architectures": [
4
+ "BertForSequenceClassification"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0",
14
+ "1": "LABEL_1",
15
+ "2": "LABEL_2"
16
+ },
17
+ "initializer_range": 0.02,
18
+ "intermediate_size": 3072,
19
+ "label2id": {
20
+ "LABEL_0": 0,
21
+ "LABEL_1": 1,
22
+ "LABEL_2": 2
23
+ },
24
+ "layer_norm_eps": 1e-12,
25
+ "max_position_embeddings": 512,
26
+ "model_type": "bert",
27
+ "num_attention_heads": 12,
28
+ "num_hidden_layers": 12,
29
+ "pad_token_id": 0,
30
+ "position_embedding_type": "absolute",
31
+ "problem_type": "multi_label_classification",
32
+ "torch_dtype": "float32",
33
+ "transformers_version": "4.42.3",
34
+ "type_vocab_size": 2,
35
+ "use_cache": true,
36
+ "vocab_size": 30522
37
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:640ece9e4c2f611220aa9a1638fc8489308acf329b3fdcfc16b653c385e709d0
3
+ size 437961724
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:af8ed13f30face8aea92c8cc209c6a809e41b142a0bb39a282374d3086cd0715
3
+ size 5048
vocab.txt ADDED
The diff for this file is too large to render. See raw diff