Yinka / README.md
Classical's picture
Upload 12 files
b4a1d77 verified
|
raw
history blame
25.8 kB
metadata
tags:
  - mteb
model-index:
  - name: checkpoint-1431
    results:
      - task:
          type: STS
        dataset:
          type: C-MTEB/AFQMC
          name: MTEB AFQMC
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 56.306314279047875
          - type: cos_sim_spearman
            value: 61.020227685004016
          - type: euclidean_pearson
            value: 58.61821670933433
          - type: euclidean_spearman
            value: 60.131457106640674
          - type: manhattan_pearson
            value: 58.6189460369694
          - type: manhattan_spearman
            value: 60.126350618526224
      - task:
          type: STS
        dataset:
          type: C-MTEB/ATEC
          name: MTEB ATEC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 55.8612958476143
          - type: cos_sim_spearman
            value: 59.01977664864512
          - type: euclidean_pearson
            value: 62.028094897243655
          - type: euclidean_spearman
            value: 58.6046814257705
          - type: manhattan_pearson
            value: 62.02580042431887
          - type: manhattan_spearman
            value: 58.60626890004892
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_reviews_multi
          name: MTEB AmazonReviewsClassification (zh)
          config: zh
          split: test
          revision: 1399c76144fd37290681b995c656ef9b2e06e26d
        metrics:
          - type: accuracy
            value: 49.496
          - type: f1
            value: 46.673963383873065
      - task:
          type: STS
        dataset:
          type: C-MTEB/BQ
          name: MTEB BQ
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 70.73971622592535
          - type: cos_sim_spearman
            value: 72.76102992060764
          - type: euclidean_pearson
            value: 71.04525865868672
          - type: euclidean_spearman
            value: 72.4032852155075
          - type: manhattan_pearson
            value: 71.03693009336658
          - type: manhattan_spearman
            value: 72.39635701224252
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringP2P
          name: MTEB CLSClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 56.34751074520767
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/CLSClusteringS2S
          name: MTEB CLSClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 48.4856662121073
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv1-reranking
          name: MTEB CMedQAv1
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 89.26384109024997
          - type: mrr
            value: 91.27261904761905
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/CMedQAv2-reranking
          name: MTEB CMedQAv2
          config: default
          split: test
          revision: None
        metrics:
          - type: map
            value: 90.0464058154547
          - type: mrr
            value: 92.06480158730159
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CmedqaRetrieval
          name: MTEB CmedqaRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 27.236
          - type: map_at_10
            value: 40.778
          - type: map_at_100
            value: 42.692
          - type: map_at_1000
            value: 42.787
          - type: map_at_3
            value: 36.362
          - type: map_at_5
            value: 38.839
          - type: mrr_at_1
            value: 41.335
          - type: mrr_at_10
            value: 49.867
          - type: mrr_at_100
            value: 50.812999999999995
          - type: mrr_at_1000
            value: 50.848000000000006
          - type: mrr_at_3
            value: 47.354
          - type: mrr_at_5
            value: 48.718
          - type: ndcg_at_1
            value: 41.335
          - type: ndcg_at_10
            value: 47.642
          - type: ndcg_at_100
            value: 54.855
          - type: ndcg_at_1000
            value: 56.449000000000005
          - type: ndcg_at_3
            value: 42.203
          - type: ndcg_at_5
            value: 44.416
          - type: precision_at_1
            value: 41.335
          - type: precision_at_10
            value: 10.568
          - type: precision_at_100
            value: 1.6400000000000001
          - type: precision_at_1000
            value: 0.184
          - type: precision_at_3
            value: 23.998
          - type: precision_at_5
            value: 17.389
          - type: recall_at_1
            value: 27.236
          - type: recall_at_10
            value: 58.80800000000001
          - type: recall_at_100
            value: 88.411
          - type: recall_at_1000
            value: 99.032
          - type: recall_at_3
            value: 42.253
          - type: recall_at_5
            value: 49.118
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/CMNLI
          name: MTEB Cmnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 86.03728202044498
          - type: cos_sim_ap
            value: 92.49469583272597
          - type: cos_sim_f1
            value: 86.74095974528088
          - type: cos_sim_precision
            value: 84.43657294664601
          - type: cos_sim_recall
            value: 89.17465513210195
          - type: dot_accuracy
            value: 72.21888153938664
          - type: dot_ap
            value: 80.59377163340332
          - type: dot_f1
            value: 74.96686040583258
          - type: dot_precision
            value: 66.4737793851718
          - type: dot_recall
            value: 85.94809445873275
          - type: euclidean_accuracy
            value: 85.47203848466627
          - type: euclidean_ap
            value: 91.89152584749868
          - type: euclidean_f1
            value: 86.38105975197294
          - type: euclidean_precision
            value: 83.40953625081646
          - type: euclidean_recall
            value: 89.5721299976619
          - type: manhattan_accuracy
            value: 85.3758268190018
          - type: manhattan_ap
            value: 91.88989707722311
          - type: manhattan_f1
            value: 86.39767519839052
          - type: manhattan_precision
            value: 82.76231263383298
          - type: manhattan_recall
            value: 90.36707972878185
          - type: max_accuracy
            value: 86.03728202044498
          - type: max_ap
            value: 92.49469583272597
          - type: max_f1
            value: 86.74095974528088
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/CovidRetrieval
          name: MTEB CovidRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 74.34100000000001
          - type: map_at_10
            value: 82.49499999999999
          - type: map_at_100
            value: 82.64200000000001
          - type: map_at_1000
            value: 82.643
          - type: map_at_3
            value: 81.142
          - type: map_at_5
            value: 81.95400000000001
          - type: mrr_at_1
            value: 74.71
          - type: mrr_at_10
            value: 82.553
          - type: mrr_at_100
            value: 82.699
          - type: mrr_at_1000
            value: 82.70100000000001
          - type: mrr_at_3
            value: 81.279
          - type: mrr_at_5
            value: 82.069
          - type: ndcg_at_1
            value: 74.605
          - type: ndcg_at_10
            value: 85.946
          - type: ndcg_at_100
            value: 86.607
          - type: ndcg_at_1000
            value: 86.669
          - type: ndcg_at_3
            value: 83.263
          - type: ndcg_at_5
            value: 84.71600000000001
          - type: precision_at_1
            value: 74.605
          - type: precision_at_10
            value: 9.758
          - type: precision_at_100
            value: 1.005
          - type: precision_at_1000
            value: 0.101
          - type: precision_at_3
            value: 29.996000000000002
          - type: precision_at_5
            value: 18.736
          - type: recall_at_1
            value: 74.34100000000001
          - type: recall_at_10
            value: 96.523
          - type: recall_at_100
            value: 99.473
          - type: recall_at_1000
            value: 100
          - type: recall_at_3
            value: 89.278
          - type: recall_at_5
            value: 92.83500000000001
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/DuRetrieval
          name: MTEB DuRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 26.950000000000003
          - type: map_at_10
            value: 82.408
          - type: map_at_100
            value: 85.057
          - type: map_at_1000
            value: 85.09100000000001
          - type: map_at_3
            value: 57.635999999999996
          - type: map_at_5
            value: 72.48
          - type: mrr_at_1
            value: 92.15
          - type: mrr_at_10
            value: 94.554
          - type: mrr_at_100
            value: 94.608
          - type: mrr_at_1000
            value: 94.61
          - type: mrr_at_3
            value: 94.292
          - type: mrr_at_5
            value: 94.459
          - type: ndcg_at_1
            value: 92.15
          - type: ndcg_at_10
            value: 89.108
          - type: ndcg_at_100
            value: 91.525
          - type: ndcg_at_1000
            value: 91.82900000000001
          - type: ndcg_at_3
            value: 88.44
          - type: ndcg_at_5
            value: 87.271
          - type: precision_at_1
            value: 92.15
          - type: precision_at_10
            value: 42.29
          - type: precision_at_100
            value: 4.812
          - type: precision_at_1000
            value: 0.48900000000000005
          - type: precision_at_3
            value: 79.14999999999999
          - type: precision_at_5
            value: 66.64
          - type: recall_at_1
            value: 26.950000000000003
          - type: recall_at_10
            value: 89.832
          - type: recall_at_100
            value: 97.921
          - type: recall_at_1000
            value: 99.471
          - type: recall_at_3
            value: 59.562000000000005
          - type: recall_at_5
            value: 76.533
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/EcomRetrieval
          name: MTEB EcomRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 53.5
          - type: map_at_10
            value: 63.105999999999995
          - type: map_at_100
            value: 63.63100000000001
          - type: map_at_1000
            value: 63.641999999999996
          - type: map_at_3
            value: 60.617
          - type: map_at_5
            value: 62.132
          - type: mrr_at_1
            value: 53.5
          - type: mrr_at_10
            value: 63.105999999999995
          - type: mrr_at_100
            value: 63.63100000000001
          - type: mrr_at_1000
            value: 63.641999999999996
          - type: mrr_at_3
            value: 60.617
          - type: mrr_at_5
            value: 62.132
          - type: ndcg_at_1
            value: 53.5
          - type: ndcg_at_10
            value: 67.92200000000001
          - type: ndcg_at_100
            value: 70.486
          - type: ndcg_at_1000
            value: 70.777
          - type: ndcg_at_3
            value: 62.853
          - type: ndcg_at_5
            value: 65.59899999999999
          - type: precision_at_1
            value: 53.5
          - type: precision_at_10
            value: 8.309999999999999
          - type: precision_at_100
            value: 0.951
          - type: precision_at_1000
            value: 0.097
          - type: precision_at_3
            value: 23.1
          - type: precision_at_5
            value: 15.2
          - type: recall_at_1
            value: 53.5
          - type: recall_at_10
            value: 83.1
          - type: recall_at_100
            value: 95.1
          - type: recall_at_1000
            value: 97.39999999999999
          - type: recall_at_3
            value: 69.3
          - type: recall_at_5
            value: 76
      - task:
          type: Classification
        dataset:
          type: C-MTEB/IFlyTek-classification
          name: MTEB IFlyTek
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 51.773759138130046
          - type: f1
            value: 40.38600802756481
      - task:
          type: Classification
        dataset:
          type: C-MTEB/JDReview-classification
          name: MTEB JDReview
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 88.48030018761726
          - type: ap
            value: 59.2732541555627
          - type: f1
            value: 83.58836007358619
      - task:
          type: STS
        dataset:
          type: C-MTEB/LCQMC
          name: MTEB LCQMC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 73.67511194245922
          - type: cos_sim_spearman
            value: 79.43347759067298
          - type: euclidean_pearson
            value: 79.04491504318766
          - type: euclidean_spearman
            value: 79.14478545356785
          - type: manhattan_pearson
            value: 79.03365022867428
          - type: manhattan_spearman
            value: 79.13172717619908
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MMarcoRetrieval
          name: MTEB MMarcoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 67.184
          - type: map_at_10
            value: 76.24600000000001
          - type: map_at_100
            value: 76.563
          - type: map_at_1000
            value: 76.575
          - type: map_at_3
            value: 74.522
          - type: map_at_5
            value: 75.598
          - type: mrr_at_1
            value: 69.47
          - type: mrr_at_10
            value: 76.8
          - type: mrr_at_100
            value: 77.082
          - type: mrr_at_1000
            value: 77.093
          - type: mrr_at_3
            value: 75.29400000000001
          - type: mrr_at_5
            value: 76.24
          - type: ndcg_at_1
            value: 69.47
          - type: ndcg_at_10
            value: 79.81099999999999
          - type: ndcg_at_100
            value: 81.187
          - type: ndcg_at_1000
            value: 81.492
          - type: ndcg_at_3
            value: 76.536
          - type: ndcg_at_5
            value: 78.367
          - type: precision_at_1
            value: 69.47
          - type: precision_at_10
            value: 9.599
          - type: precision_at_100
            value: 1.026
          - type: precision_at_1000
            value: 0.105
          - type: precision_at_3
            value: 28.777
          - type: precision_at_5
            value: 18.232
          - type: recall_at_1
            value: 67.184
          - type: recall_at_10
            value: 90.211
          - type: recall_at_100
            value: 96.322
          - type: recall_at_1000
            value: 98.699
          - type: recall_at_3
            value: 81.556
          - type: recall_at_5
            value: 85.931
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_intent
          name: MTEB MassiveIntentClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
        metrics:
          - type: accuracy
            value: 76.96032279757901
          - type: f1
            value: 73.48052314033545
      - task:
          type: Classification
        dataset:
          type: mteb/amazon_massive_scenario
          name: MTEB MassiveScenarioClassification (zh-CN)
          config: zh-CN
          split: test
          revision: 7d571f92784cd94a019292a1f45445077d0ef634
        metrics:
          - type: accuracy
            value: 84.64357767316744
          - type: f1
            value: 83.58250539497922
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/MedicalRetrieval
          name: MTEB MedicalRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 56.00000000000001
          - type: map_at_10
            value: 62.066
          - type: map_at_100
            value: 62.553000000000004
          - type: map_at_1000
            value: 62.598
          - type: map_at_3
            value: 60.4
          - type: map_at_5
            value: 61.370000000000005
          - type: mrr_at_1
            value: 56.2
          - type: mrr_at_10
            value: 62.166
          - type: mrr_at_100
            value: 62.653000000000006
          - type: mrr_at_1000
            value: 62.699000000000005
          - type: mrr_at_3
            value: 60.5
          - type: mrr_at_5
            value: 61.47
          - type: ndcg_at_1
            value: 56.00000000000001
          - type: ndcg_at_10
            value: 65.199
          - type: ndcg_at_100
            value: 67.79899999999999
          - type: ndcg_at_1000
            value: 69.056
          - type: ndcg_at_3
            value: 61.814
          - type: ndcg_at_5
            value: 63.553000000000004
          - type: precision_at_1
            value: 56.00000000000001
          - type: precision_at_10
            value: 7.51
          - type: precision_at_100
            value: 0.878
          - type: precision_at_1000
            value: 0.098
          - type: precision_at_3
            value: 21.967
          - type: precision_at_5
            value: 14.02
          - type: recall_at_1
            value: 56.00000000000001
          - type: recall_at_10
            value: 75.1
          - type: recall_at_100
            value: 87.8
          - type: recall_at_1000
            value: 97.7
          - type: recall_at_3
            value: 65.9
          - type: recall_at_5
            value: 70.1
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/Mmarco-reranking
          name: MTEB MMarcoReranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 32.74158258279793
          - type: mrr
            value: 31.56071428571428
      - task:
          type: Classification
        dataset:
          type: C-MTEB/MultilingualSentiment-classification
          name: MTEB MultilingualSentiment
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 78.96666666666667
          - type: f1
            value: 78.82528563818045
      - task:
          type: PairClassification
        dataset:
          type: C-MTEB/OCNLI
          name: MTEB Ocnli
          config: default
          split: validation
          revision: None
        metrics:
          - type: cos_sim_accuracy
            value: 83.54087709799674
          - type: cos_sim_ap
            value: 87.26170197077586
          - type: cos_sim_f1
            value: 84.7609561752988
          - type: cos_sim_precision
            value: 80.20735155513667
          - type: cos_sim_recall
            value: 89.86272439281943
          - type: dot_accuracy
            value: 72.22523010286952
          - type: dot_ap
            value: 79.51975358187732
          - type: dot_f1
            value: 76.32183908045977
          - type: dot_precision
            value: 67.58957654723126
          - type: dot_recall
            value: 87.64519535374869
          - type: euclidean_accuracy
            value: 82.0249052517596
          - type: euclidean_ap
            value: 85.32829948726406
          - type: euclidean_f1
            value: 83.24924318869829
          - type: euclidean_precision
            value: 79.71014492753623
          - type: euclidean_recall
            value: 87.11721224920802
          - type: manhattan_accuracy
            value: 82.13318895506227
          - type: manhattan_ap
            value: 85.28856869288006
          - type: manhattan_f1
            value: 83.34946757018393
          - type: manhattan_precision
            value: 76.94369973190348
          - type: manhattan_recall
            value: 90.91869060190075
          - type: max_accuracy
            value: 83.54087709799674
          - type: max_ap
            value: 87.26170197077586
          - type: max_f1
            value: 84.7609561752988
      - task:
          type: Classification
        dataset:
          type: C-MTEB/OnlineShopping-classification
          name: MTEB OnlineShopping
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 94.56
          - type: ap
            value: 92.80848436710805
          - type: f1
            value: 94.54951966576111
      - task:
          type: STS
        dataset:
          type: C-MTEB/PAWSX
          name: MTEB PAWSX
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 39.0866558287863
          - type: cos_sim_spearman
            value: 45.9211126233312
          - type: euclidean_pearson
            value: 44.86568743222145
          - type: euclidean_spearman
            value: 45.63882757207507
          - type: manhattan_pearson
            value: 44.89480036909126
          - type: manhattan_spearman
            value: 45.65929449046206
      - task:
          type: STS
        dataset:
          type: C-MTEB/QBQTC
          name: MTEB QBQTC
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 43.04701793979569
          - type: cos_sim_spearman
            value: 44.87491033760315
          - type: euclidean_pearson
            value: 36.2004061032567
          - type: euclidean_spearman
            value: 41.44823909683865
          - type: manhattan_pearson
            value: 36.136113427955095
          - type: manhattan_spearman
            value: 41.39225495993949
      - task:
          type: STS
        dataset:
          type: mteb/sts22-crosslingual-sts
          name: MTEB STS22 (zh)
          config: zh
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 61.65611315777857
          - type: cos_sim_spearman
            value: 64.4067673105648
          - type: euclidean_pearson
            value: 61.814977248797184
          - type: euclidean_spearman
            value: 63.99473350700169
          - type: manhattan_pearson
            value: 61.684304629588624
          - type: manhattan_spearman
            value: 63.97831213239316
      - task:
          type: STS
        dataset:
          type: C-MTEB/STSB
          name: MTEB STSB
          config: default
          split: test
          revision: None
        metrics:
          - type: cos_sim_pearson
            value: 76.57324933064379
          - type: cos_sim_spearman
            value: 79.23602286949782
          - type: euclidean_pearson
            value: 80.28226284310948
          - type: euclidean_spearman
            value: 80.32210477608423
          - type: manhattan_pearson
            value: 80.27262188617811
          - type: manhattan_spearman
            value: 80.31619185039723
      - task:
          type: Reranking
        dataset:
          type: C-MTEB/T2Reranking
          name: MTEB T2Reranking
          config: default
          split: dev
          revision: None
        metrics:
          - type: map
            value: 67.05266891356277
          - type: mrr
            value: 77.1906333623497
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/T2Retrieval
          name: MTEB T2Retrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 28.212
          - type: map_at_10
            value: 78.932
          - type: map_at_100
            value: 82.51899999999999
          - type: map_at_1000
            value: 82.575
          - type: map_at_3
            value: 55.614
          - type: map_at_5
            value: 68.304
          - type: mrr_at_1
            value: 91.211
          - type: mrr_at_10
            value: 93.589
          - type: mrr_at_100
            value: 93.659
          - type: mrr_at_1000
            value: 93.662
          - type: mrr_at_3
            value: 93.218
          - type: mrr_at_5
            value: 93.453
          - type: ndcg_at_1
            value: 91.211
          - type: ndcg_at_10
            value: 86.24000000000001
          - type: ndcg_at_100
            value: 89.614
          - type: ndcg_at_1000
            value: 90.14
          - type: ndcg_at_3
            value: 87.589
          - type: ndcg_at_5
            value: 86.265
          - type: precision_at_1
            value: 91.211
          - type: precision_at_10
            value: 42.626
          - type: precision_at_100
            value: 5.043
          - type: precision_at_1000
            value: 0.517
          - type: precision_at_3
            value: 76.42
          - type: precision_at_5
            value: 64.045
          - type: recall_at_1
            value: 28.212
          - type: recall_at_10
            value: 85.223
          - type: recall_at_100
            value: 96.229
          - type: recall_at_1000
            value: 98.849
          - type: recall_at_3
            value: 57.30800000000001
          - type: recall_at_5
            value: 71.661
      - task:
          type: Classification
        dataset:
          type: C-MTEB/TNews-classification
          name: MTEB TNews
          config: default
          split: validation
          revision: None
        metrics:
          - type: accuracy
            value: 54.385000000000005
          - type: f1
            value: 52.38762400903556
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringP2P
          name: MTEB ThuNewsClusteringP2P
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 74.55283855942916
      - task:
          type: Clustering
        dataset:
          type: C-MTEB/ThuNewsClusteringS2S
          name: MTEB ThuNewsClusteringS2S
          config: default
          split: test
          revision: None
        metrics:
          - type: v_measure
            value: 68.55115316700493
      - task:
          type: Retrieval
        dataset:
          type: C-MTEB/VideoRetrieval
          name: MTEB VideoRetrieval
          config: default
          split: dev
          revision: None
        metrics:
          - type: map_at_1
            value: 58.8
          - type: map_at_10
            value: 69.035
          - type: map_at_100
            value: 69.52000000000001
          - type: map_at_1000
            value: 69.529
          - type: map_at_3
            value: 67.417
          - type: map_at_5
            value: 68.407
          - type: mrr_at_1
            value: 58.8
          - type: mrr_at_10
            value: 69.035
          - type: mrr_at_100
            value: 69.52000000000001
          - type: mrr_at_1000
            value: 69.529
          - type: mrr_at_3
            value: 67.417
          - type: mrr_at_5
            value: 68.407
          - type: ndcg_at_1
            value: 58.8
          - type: ndcg_at_10
            value: 73.395
          - type: ndcg_at_100
            value: 75.62
          - type: ndcg_at_1000
            value: 75.90299999999999
          - type: ndcg_at_3
            value: 70.11800000000001
          - type: ndcg_at_5
            value: 71.87400000000001
          - type: precision_at_1
            value: 58.8
          - type: precision_at_10
            value: 8.68
          - type: precision_at_100
            value: 0.9690000000000001
          - type: precision_at_1000
            value: 0.099
          - type: precision_at_3
            value: 25.967000000000002
          - type: precision_at_5
            value: 16.42
          - type: recall_at_1
            value: 58.8
          - type: recall_at_10
            value: 86.8
          - type: recall_at_100
            value: 96.89999999999999
          - type: recall_at_1000
            value: 99.2
          - type: recall_at_3
            value: 77.9
          - type: recall_at_5
            value: 82.1
      - task:
          type: Classification
        dataset:
          type: C-MTEB/waimai-classification
          name: MTEB Waimai
          config: default
          split: test
          revision: None
        metrics:
          - type: accuracy
            value: 89.42
          - type: ap
            value: 75.35978503182068
          - type: f1
            value: 88.01006394348263

Yinka

Yinka embedding 模型是在开原模型stella-v3.5-mrl上续训的,采用了piccolo2提到的多任务混合损失(multi-task hybrid loss training)。同样本模型也支持了可变的向量维度。

使用方法

该模型的使用方法同stella-v3.5-mrl一样, 无需任何前缀。

from sentence_transformers import SentenceTransformer
from sklearn.preprocessing import normalize

model = SentenceTransformer("")
# 注意先不要normalize! 选取前n维后再normalize
vectors = model.encode(["text1", "text2"], normalize_embeddings=False)
print(vectors.shape)  # shape is [2,1792]
n_dims = 768
cut_vecs = normalize(vectors[:, :n_dims])

训练细节

TODO

Licence

本模型采用MIT licence.