Upload 12 files
Browse files- 1_Pooling/config.json +7 -0
- 2_Dense/config.json +6 -0
- 2_Dense/pytorch_model.bin +3 -0
- README.md +1081 -3
- config.json +27 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +57 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
2_Dense/config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"in_features": 1024,
|
3 |
+
"out_features": 1792,
|
4 |
+
"bias": true,
|
5 |
+
"activation_function": "torch.nn.modules.linear.Identity"
|
6 |
+
}
|
2_Dense/pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa650549f91c0471ad79872a1f8ba2930f54147f0da5fb5a8851f9d19d8200bd
|
3 |
+
size 3675150
|
README.md
CHANGED
@@ -1,3 +1,1081 @@
|
|
1 |
-
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
model-index:
|
5 |
+
- name: checkpoint-1431
|
6 |
+
results:
|
7 |
+
- task:
|
8 |
+
type: STS
|
9 |
+
dataset:
|
10 |
+
type: C-MTEB/AFQMC
|
11 |
+
name: MTEB AFQMC
|
12 |
+
config: default
|
13 |
+
split: validation
|
14 |
+
revision: None
|
15 |
+
metrics:
|
16 |
+
- type: cos_sim_pearson
|
17 |
+
value: 56.306314279047875
|
18 |
+
- type: cos_sim_spearman
|
19 |
+
value: 61.020227685004016
|
20 |
+
- type: euclidean_pearson
|
21 |
+
value: 58.61821670933433
|
22 |
+
- type: euclidean_spearman
|
23 |
+
value: 60.131457106640674
|
24 |
+
- type: manhattan_pearson
|
25 |
+
value: 58.6189460369694
|
26 |
+
- type: manhattan_spearman
|
27 |
+
value: 60.126350618526224
|
28 |
+
- task:
|
29 |
+
type: STS
|
30 |
+
dataset:
|
31 |
+
type: C-MTEB/ATEC
|
32 |
+
name: MTEB ATEC
|
33 |
+
config: default
|
34 |
+
split: test
|
35 |
+
revision: None
|
36 |
+
metrics:
|
37 |
+
- type: cos_sim_pearson
|
38 |
+
value: 55.8612958476143
|
39 |
+
- type: cos_sim_spearman
|
40 |
+
value: 59.01977664864512
|
41 |
+
- type: euclidean_pearson
|
42 |
+
value: 62.028094897243655
|
43 |
+
- type: euclidean_spearman
|
44 |
+
value: 58.6046814257705
|
45 |
+
- type: manhattan_pearson
|
46 |
+
value: 62.02580042431887
|
47 |
+
- type: manhattan_spearman
|
48 |
+
value: 58.60626890004892
|
49 |
+
- task:
|
50 |
+
type: Classification
|
51 |
+
dataset:
|
52 |
+
type: mteb/amazon_reviews_multi
|
53 |
+
name: MTEB AmazonReviewsClassification (zh)
|
54 |
+
config: zh
|
55 |
+
split: test
|
56 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
57 |
+
metrics:
|
58 |
+
- type: accuracy
|
59 |
+
value: 49.496
|
60 |
+
- type: f1
|
61 |
+
value: 46.673963383873065
|
62 |
+
- task:
|
63 |
+
type: STS
|
64 |
+
dataset:
|
65 |
+
type: C-MTEB/BQ
|
66 |
+
name: MTEB BQ
|
67 |
+
config: default
|
68 |
+
split: test
|
69 |
+
revision: None
|
70 |
+
metrics:
|
71 |
+
- type: cos_sim_pearson
|
72 |
+
value: 70.73971622592535
|
73 |
+
- type: cos_sim_spearman
|
74 |
+
value: 72.76102992060764
|
75 |
+
- type: euclidean_pearson
|
76 |
+
value: 71.04525865868672
|
77 |
+
- type: euclidean_spearman
|
78 |
+
value: 72.4032852155075
|
79 |
+
- type: manhattan_pearson
|
80 |
+
value: 71.03693009336658
|
81 |
+
- type: manhattan_spearman
|
82 |
+
value: 72.39635701224252
|
83 |
+
- task:
|
84 |
+
type: Clustering
|
85 |
+
dataset:
|
86 |
+
type: C-MTEB/CLSClusteringP2P
|
87 |
+
name: MTEB CLSClusteringP2P
|
88 |
+
config: default
|
89 |
+
split: test
|
90 |
+
revision: None
|
91 |
+
metrics:
|
92 |
+
- type: v_measure
|
93 |
+
value: 56.34751074520767
|
94 |
+
- task:
|
95 |
+
type: Clustering
|
96 |
+
dataset:
|
97 |
+
type: C-MTEB/CLSClusteringS2S
|
98 |
+
name: MTEB CLSClusteringS2S
|
99 |
+
config: default
|
100 |
+
split: test
|
101 |
+
revision: None
|
102 |
+
metrics:
|
103 |
+
- type: v_measure
|
104 |
+
value: 48.4856662121073
|
105 |
+
- task:
|
106 |
+
type: Reranking
|
107 |
+
dataset:
|
108 |
+
type: C-MTEB/CMedQAv1-reranking
|
109 |
+
name: MTEB CMedQAv1
|
110 |
+
config: default
|
111 |
+
split: test
|
112 |
+
revision: None
|
113 |
+
metrics:
|
114 |
+
- type: map
|
115 |
+
value: 89.26384109024997
|
116 |
+
- type: mrr
|
117 |
+
value: 91.27261904761905
|
118 |
+
- task:
|
119 |
+
type: Reranking
|
120 |
+
dataset:
|
121 |
+
type: C-MTEB/CMedQAv2-reranking
|
122 |
+
name: MTEB CMedQAv2
|
123 |
+
config: default
|
124 |
+
split: test
|
125 |
+
revision: None
|
126 |
+
metrics:
|
127 |
+
- type: map
|
128 |
+
value: 90.0464058154547
|
129 |
+
- type: mrr
|
130 |
+
value: 92.06480158730159
|
131 |
+
- task:
|
132 |
+
type: Retrieval
|
133 |
+
dataset:
|
134 |
+
type: C-MTEB/CmedqaRetrieval
|
135 |
+
name: MTEB CmedqaRetrieval
|
136 |
+
config: default
|
137 |
+
split: dev
|
138 |
+
revision: None
|
139 |
+
metrics:
|
140 |
+
- type: map_at_1
|
141 |
+
value: 27.236
|
142 |
+
- type: map_at_10
|
143 |
+
value: 40.778
|
144 |
+
- type: map_at_100
|
145 |
+
value: 42.692
|
146 |
+
- type: map_at_1000
|
147 |
+
value: 42.787
|
148 |
+
- type: map_at_3
|
149 |
+
value: 36.362
|
150 |
+
- type: map_at_5
|
151 |
+
value: 38.839
|
152 |
+
- type: mrr_at_1
|
153 |
+
value: 41.335
|
154 |
+
- type: mrr_at_10
|
155 |
+
value: 49.867
|
156 |
+
- type: mrr_at_100
|
157 |
+
value: 50.812999999999995
|
158 |
+
- type: mrr_at_1000
|
159 |
+
value: 50.848000000000006
|
160 |
+
- type: mrr_at_3
|
161 |
+
value: 47.354
|
162 |
+
- type: mrr_at_5
|
163 |
+
value: 48.718
|
164 |
+
- type: ndcg_at_1
|
165 |
+
value: 41.335
|
166 |
+
- type: ndcg_at_10
|
167 |
+
value: 47.642
|
168 |
+
- type: ndcg_at_100
|
169 |
+
value: 54.855
|
170 |
+
- type: ndcg_at_1000
|
171 |
+
value: 56.449000000000005
|
172 |
+
- type: ndcg_at_3
|
173 |
+
value: 42.203
|
174 |
+
- type: ndcg_at_5
|
175 |
+
value: 44.416
|
176 |
+
- type: precision_at_1
|
177 |
+
value: 41.335
|
178 |
+
- type: precision_at_10
|
179 |
+
value: 10.568
|
180 |
+
- type: precision_at_100
|
181 |
+
value: 1.6400000000000001
|
182 |
+
- type: precision_at_1000
|
183 |
+
value: 0.184
|
184 |
+
- type: precision_at_3
|
185 |
+
value: 23.998
|
186 |
+
- type: precision_at_5
|
187 |
+
value: 17.389
|
188 |
+
- type: recall_at_1
|
189 |
+
value: 27.236
|
190 |
+
- type: recall_at_10
|
191 |
+
value: 58.80800000000001
|
192 |
+
- type: recall_at_100
|
193 |
+
value: 88.411
|
194 |
+
- type: recall_at_1000
|
195 |
+
value: 99.032
|
196 |
+
- type: recall_at_3
|
197 |
+
value: 42.253
|
198 |
+
- type: recall_at_5
|
199 |
+
value: 49.118
|
200 |
+
- task:
|
201 |
+
type: PairClassification
|
202 |
+
dataset:
|
203 |
+
type: C-MTEB/CMNLI
|
204 |
+
name: MTEB Cmnli
|
205 |
+
config: default
|
206 |
+
split: validation
|
207 |
+
revision: None
|
208 |
+
metrics:
|
209 |
+
- type: cos_sim_accuracy
|
210 |
+
value: 86.03728202044498
|
211 |
+
- type: cos_sim_ap
|
212 |
+
value: 92.49469583272597
|
213 |
+
- type: cos_sim_f1
|
214 |
+
value: 86.74095974528088
|
215 |
+
- type: cos_sim_precision
|
216 |
+
value: 84.43657294664601
|
217 |
+
- type: cos_sim_recall
|
218 |
+
value: 89.17465513210195
|
219 |
+
- type: dot_accuracy
|
220 |
+
value: 72.21888153938664
|
221 |
+
- type: dot_ap
|
222 |
+
value: 80.59377163340332
|
223 |
+
- type: dot_f1
|
224 |
+
value: 74.96686040583258
|
225 |
+
- type: dot_precision
|
226 |
+
value: 66.4737793851718
|
227 |
+
- type: dot_recall
|
228 |
+
value: 85.94809445873275
|
229 |
+
- type: euclidean_accuracy
|
230 |
+
value: 85.47203848466627
|
231 |
+
- type: euclidean_ap
|
232 |
+
value: 91.89152584749868
|
233 |
+
- type: euclidean_f1
|
234 |
+
value: 86.38105975197294
|
235 |
+
- type: euclidean_precision
|
236 |
+
value: 83.40953625081646
|
237 |
+
- type: euclidean_recall
|
238 |
+
value: 89.5721299976619
|
239 |
+
- type: manhattan_accuracy
|
240 |
+
value: 85.3758268190018
|
241 |
+
- type: manhattan_ap
|
242 |
+
value: 91.88989707722311
|
243 |
+
- type: manhattan_f1
|
244 |
+
value: 86.39767519839052
|
245 |
+
- type: manhattan_precision
|
246 |
+
value: 82.76231263383298
|
247 |
+
- type: manhattan_recall
|
248 |
+
value: 90.36707972878185
|
249 |
+
- type: max_accuracy
|
250 |
+
value: 86.03728202044498
|
251 |
+
- type: max_ap
|
252 |
+
value: 92.49469583272597
|
253 |
+
- type: max_f1
|
254 |
+
value: 86.74095974528088
|
255 |
+
- task:
|
256 |
+
type: Retrieval
|
257 |
+
dataset:
|
258 |
+
type: C-MTEB/CovidRetrieval
|
259 |
+
name: MTEB CovidRetrieval
|
260 |
+
config: default
|
261 |
+
split: dev
|
262 |
+
revision: None
|
263 |
+
metrics:
|
264 |
+
- type: map_at_1
|
265 |
+
value: 74.34100000000001
|
266 |
+
- type: map_at_10
|
267 |
+
value: 82.49499999999999
|
268 |
+
- type: map_at_100
|
269 |
+
value: 82.64200000000001
|
270 |
+
- type: map_at_1000
|
271 |
+
value: 82.643
|
272 |
+
- type: map_at_3
|
273 |
+
value: 81.142
|
274 |
+
- type: map_at_5
|
275 |
+
value: 81.95400000000001
|
276 |
+
- type: mrr_at_1
|
277 |
+
value: 74.71
|
278 |
+
- type: mrr_at_10
|
279 |
+
value: 82.553
|
280 |
+
- type: mrr_at_100
|
281 |
+
value: 82.699
|
282 |
+
- type: mrr_at_1000
|
283 |
+
value: 82.70100000000001
|
284 |
+
- type: mrr_at_3
|
285 |
+
value: 81.279
|
286 |
+
- type: mrr_at_5
|
287 |
+
value: 82.069
|
288 |
+
- type: ndcg_at_1
|
289 |
+
value: 74.605
|
290 |
+
- type: ndcg_at_10
|
291 |
+
value: 85.946
|
292 |
+
- type: ndcg_at_100
|
293 |
+
value: 86.607
|
294 |
+
- type: ndcg_at_1000
|
295 |
+
value: 86.669
|
296 |
+
- type: ndcg_at_3
|
297 |
+
value: 83.263
|
298 |
+
- type: ndcg_at_5
|
299 |
+
value: 84.71600000000001
|
300 |
+
- type: precision_at_1
|
301 |
+
value: 74.605
|
302 |
+
- type: precision_at_10
|
303 |
+
value: 9.758
|
304 |
+
- type: precision_at_100
|
305 |
+
value: 1.005
|
306 |
+
- type: precision_at_1000
|
307 |
+
value: 0.101
|
308 |
+
- type: precision_at_3
|
309 |
+
value: 29.996000000000002
|
310 |
+
- type: precision_at_5
|
311 |
+
value: 18.736
|
312 |
+
- type: recall_at_1
|
313 |
+
value: 74.34100000000001
|
314 |
+
- type: recall_at_10
|
315 |
+
value: 96.523
|
316 |
+
- type: recall_at_100
|
317 |
+
value: 99.473
|
318 |
+
- type: recall_at_1000
|
319 |
+
value: 100.0
|
320 |
+
- type: recall_at_3
|
321 |
+
value: 89.278
|
322 |
+
- type: recall_at_5
|
323 |
+
value: 92.83500000000001
|
324 |
+
- task:
|
325 |
+
type: Retrieval
|
326 |
+
dataset:
|
327 |
+
type: C-MTEB/DuRetrieval
|
328 |
+
name: MTEB DuRetrieval
|
329 |
+
config: default
|
330 |
+
split: dev
|
331 |
+
revision: None
|
332 |
+
metrics:
|
333 |
+
- type: map_at_1
|
334 |
+
value: 26.950000000000003
|
335 |
+
- type: map_at_10
|
336 |
+
value: 82.408
|
337 |
+
- type: map_at_100
|
338 |
+
value: 85.057
|
339 |
+
- type: map_at_1000
|
340 |
+
value: 85.09100000000001
|
341 |
+
- type: map_at_3
|
342 |
+
value: 57.635999999999996
|
343 |
+
- type: map_at_5
|
344 |
+
value: 72.48
|
345 |
+
- type: mrr_at_1
|
346 |
+
value: 92.15
|
347 |
+
- type: mrr_at_10
|
348 |
+
value: 94.554
|
349 |
+
- type: mrr_at_100
|
350 |
+
value: 94.608
|
351 |
+
- type: mrr_at_1000
|
352 |
+
value: 94.61
|
353 |
+
- type: mrr_at_3
|
354 |
+
value: 94.292
|
355 |
+
- type: mrr_at_5
|
356 |
+
value: 94.459
|
357 |
+
- type: ndcg_at_1
|
358 |
+
value: 92.15
|
359 |
+
- type: ndcg_at_10
|
360 |
+
value: 89.108
|
361 |
+
- type: ndcg_at_100
|
362 |
+
value: 91.525
|
363 |
+
- type: ndcg_at_1000
|
364 |
+
value: 91.82900000000001
|
365 |
+
- type: ndcg_at_3
|
366 |
+
value: 88.44
|
367 |
+
- type: ndcg_at_5
|
368 |
+
value: 87.271
|
369 |
+
- type: precision_at_1
|
370 |
+
value: 92.15
|
371 |
+
- type: precision_at_10
|
372 |
+
value: 42.29
|
373 |
+
- type: precision_at_100
|
374 |
+
value: 4.812
|
375 |
+
- type: precision_at_1000
|
376 |
+
value: 0.48900000000000005
|
377 |
+
- type: precision_at_3
|
378 |
+
value: 79.14999999999999
|
379 |
+
- type: precision_at_5
|
380 |
+
value: 66.64
|
381 |
+
- type: recall_at_1
|
382 |
+
value: 26.950000000000003
|
383 |
+
- type: recall_at_10
|
384 |
+
value: 89.832
|
385 |
+
- type: recall_at_100
|
386 |
+
value: 97.921
|
387 |
+
- type: recall_at_1000
|
388 |
+
value: 99.471
|
389 |
+
- type: recall_at_3
|
390 |
+
value: 59.562000000000005
|
391 |
+
- type: recall_at_5
|
392 |
+
value: 76.533
|
393 |
+
- task:
|
394 |
+
type: Retrieval
|
395 |
+
dataset:
|
396 |
+
type: C-MTEB/EcomRetrieval
|
397 |
+
name: MTEB EcomRetrieval
|
398 |
+
config: default
|
399 |
+
split: dev
|
400 |
+
revision: None
|
401 |
+
metrics:
|
402 |
+
- type: map_at_1
|
403 |
+
value: 53.5
|
404 |
+
- type: map_at_10
|
405 |
+
value: 63.105999999999995
|
406 |
+
- type: map_at_100
|
407 |
+
value: 63.63100000000001
|
408 |
+
- type: map_at_1000
|
409 |
+
value: 63.641999999999996
|
410 |
+
- type: map_at_3
|
411 |
+
value: 60.617
|
412 |
+
- type: map_at_5
|
413 |
+
value: 62.132
|
414 |
+
- type: mrr_at_1
|
415 |
+
value: 53.5
|
416 |
+
- type: mrr_at_10
|
417 |
+
value: 63.105999999999995
|
418 |
+
- type: mrr_at_100
|
419 |
+
value: 63.63100000000001
|
420 |
+
- type: mrr_at_1000
|
421 |
+
value: 63.641999999999996
|
422 |
+
- type: mrr_at_3
|
423 |
+
value: 60.617
|
424 |
+
- type: mrr_at_5
|
425 |
+
value: 62.132
|
426 |
+
- type: ndcg_at_1
|
427 |
+
value: 53.5
|
428 |
+
- type: ndcg_at_10
|
429 |
+
value: 67.92200000000001
|
430 |
+
- type: ndcg_at_100
|
431 |
+
value: 70.486
|
432 |
+
- type: ndcg_at_1000
|
433 |
+
value: 70.777
|
434 |
+
- type: ndcg_at_3
|
435 |
+
value: 62.853
|
436 |
+
- type: ndcg_at_5
|
437 |
+
value: 65.59899999999999
|
438 |
+
- type: precision_at_1
|
439 |
+
value: 53.5
|
440 |
+
- type: precision_at_10
|
441 |
+
value: 8.309999999999999
|
442 |
+
- type: precision_at_100
|
443 |
+
value: 0.951
|
444 |
+
- type: precision_at_1000
|
445 |
+
value: 0.097
|
446 |
+
- type: precision_at_3
|
447 |
+
value: 23.1
|
448 |
+
- type: precision_at_5
|
449 |
+
value: 15.2
|
450 |
+
- type: recall_at_1
|
451 |
+
value: 53.5
|
452 |
+
- type: recall_at_10
|
453 |
+
value: 83.1
|
454 |
+
- type: recall_at_100
|
455 |
+
value: 95.1
|
456 |
+
- type: recall_at_1000
|
457 |
+
value: 97.39999999999999
|
458 |
+
- type: recall_at_3
|
459 |
+
value: 69.3
|
460 |
+
- type: recall_at_5
|
461 |
+
value: 76.0
|
462 |
+
- task:
|
463 |
+
type: Classification
|
464 |
+
dataset:
|
465 |
+
type: C-MTEB/IFlyTek-classification
|
466 |
+
name: MTEB IFlyTek
|
467 |
+
config: default
|
468 |
+
split: validation
|
469 |
+
revision: None
|
470 |
+
metrics:
|
471 |
+
- type: accuracy
|
472 |
+
value: 51.773759138130046
|
473 |
+
- type: f1
|
474 |
+
value: 40.38600802756481
|
475 |
+
- task:
|
476 |
+
type: Classification
|
477 |
+
dataset:
|
478 |
+
type: C-MTEB/JDReview-classification
|
479 |
+
name: MTEB JDReview
|
480 |
+
config: default
|
481 |
+
split: test
|
482 |
+
revision: None
|
483 |
+
metrics:
|
484 |
+
- type: accuracy
|
485 |
+
value: 88.48030018761726
|
486 |
+
- type: ap
|
487 |
+
value: 59.2732541555627
|
488 |
+
- type: f1
|
489 |
+
value: 83.58836007358619
|
490 |
+
- task:
|
491 |
+
type: STS
|
492 |
+
dataset:
|
493 |
+
type: C-MTEB/LCQMC
|
494 |
+
name: MTEB LCQMC
|
495 |
+
config: default
|
496 |
+
split: test
|
497 |
+
revision: None
|
498 |
+
metrics:
|
499 |
+
- type: cos_sim_pearson
|
500 |
+
value: 73.67511194245922
|
501 |
+
- type: cos_sim_spearman
|
502 |
+
value: 79.43347759067298
|
503 |
+
- type: euclidean_pearson
|
504 |
+
value: 79.04491504318766
|
505 |
+
- type: euclidean_spearman
|
506 |
+
value: 79.14478545356785
|
507 |
+
- type: manhattan_pearson
|
508 |
+
value: 79.03365022867428
|
509 |
+
- type: manhattan_spearman
|
510 |
+
value: 79.13172717619908
|
511 |
+
- task:
|
512 |
+
type: Retrieval
|
513 |
+
dataset:
|
514 |
+
type: C-MTEB/MMarcoRetrieval
|
515 |
+
name: MTEB MMarcoRetrieval
|
516 |
+
config: default
|
517 |
+
split: dev
|
518 |
+
revision: None
|
519 |
+
metrics:
|
520 |
+
- type: map_at_1
|
521 |
+
value: 67.184
|
522 |
+
- type: map_at_10
|
523 |
+
value: 76.24600000000001
|
524 |
+
- type: map_at_100
|
525 |
+
value: 76.563
|
526 |
+
- type: map_at_1000
|
527 |
+
value: 76.575
|
528 |
+
- type: map_at_3
|
529 |
+
value: 74.522
|
530 |
+
- type: map_at_5
|
531 |
+
value: 75.598
|
532 |
+
- type: mrr_at_1
|
533 |
+
value: 69.47
|
534 |
+
- type: mrr_at_10
|
535 |
+
value: 76.8
|
536 |
+
- type: mrr_at_100
|
537 |
+
value: 77.082
|
538 |
+
- type: mrr_at_1000
|
539 |
+
value: 77.093
|
540 |
+
- type: mrr_at_3
|
541 |
+
value: 75.29400000000001
|
542 |
+
- type: mrr_at_5
|
543 |
+
value: 76.24
|
544 |
+
- type: ndcg_at_1
|
545 |
+
value: 69.47
|
546 |
+
- type: ndcg_at_10
|
547 |
+
value: 79.81099999999999
|
548 |
+
- type: ndcg_at_100
|
549 |
+
value: 81.187
|
550 |
+
- type: ndcg_at_1000
|
551 |
+
value: 81.492
|
552 |
+
- type: ndcg_at_3
|
553 |
+
value: 76.536
|
554 |
+
- type: ndcg_at_5
|
555 |
+
value: 78.367
|
556 |
+
- type: precision_at_1
|
557 |
+
value: 69.47
|
558 |
+
- type: precision_at_10
|
559 |
+
value: 9.599
|
560 |
+
- type: precision_at_100
|
561 |
+
value: 1.026
|
562 |
+
- type: precision_at_1000
|
563 |
+
value: 0.105
|
564 |
+
- type: precision_at_3
|
565 |
+
value: 28.777
|
566 |
+
- type: precision_at_5
|
567 |
+
value: 18.232
|
568 |
+
- type: recall_at_1
|
569 |
+
value: 67.184
|
570 |
+
- type: recall_at_10
|
571 |
+
value: 90.211
|
572 |
+
- type: recall_at_100
|
573 |
+
value: 96.322
|
574 |
+
- type: recall_at_1000
|
575 |
+
value: 98.699
|
576 |
+
- type: recall_at_3
|
577 |
+
value: 81.556
|
578 |
+
- type: recall_at_5
|
579 |
+
value: 85.931
|
580 |
+
- task:
|
581 |
+
type: Classification
|
582 |
+
dataset:
|
583 |
+
type: mteb/amazon_massive_intent
|
584 |
+
name: MTEB MassiveIntentClassification (zh-CN)
|
585 |
+
config: zh-CN
|
586 |
+
split: test
|
587 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
588 |
+
metrics:
|
589 |
+
- type: accuracy
|
590 |
+
value: 76.96032279757901
|
591 |
+
- type: f1
|
592 |
+
value: 73.48052314033545
|
593 |
+
- task:
|
594 |
+
type: Classification
|
595 |
+
dataset:
|
596 |
+
type: mteb/amazon_massive_scenario
|
597 |
+
name: MTEB MassiveScenarioClassification (zh-CN)
|
598 |
+
config: zh-CN
|
599 |
+
split: test
|
600 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
601 |
+
metrics:
|
602 |
+
- type: accuracy
|
603 |
+
value: 84.64357767316744
|
604 |
+
- type: f1
|
605 |
+
value: 83.58250539497922
|
606 |
+
- task:
|
607 |
+
type: Retrieval
|
608 |
+
dataset:
|
609 |
+
type: C-MTEB/MedicalRetrieval
|
610 |
+
name: MTEB MedicalRetrieval
|
611 |
+
config: default
|
612 |
+
split: dev
|
613 |
+
revision: None
|
614 |
+
metrics:
|
615 |
+
- type: map_at_1
|
616 |
+
value: 56.00000000000001
|
617 |
+
- type: map_at_10
|
618 |
+
value: 62.066
|
619 |
+
- type: map_at_100
|
620 |
+
value: 62.553000000000004
|
621 |
+
- type: map_at_1000
|
622 |
+
value: 62.598
|
623 |
+
- type: map_at_3
|
624 |
+
value: 60.4
|
625 |
+
- type: map_at_5
|
626 |
+
value: 61.370000000000005
|
627 |
+
- type: mrr_at_1
|
628 |
+
value: 56.2
|
629 |
+
- type: mrr_at_10
|
630 |
+
value: 62.166
|
631 |
+
- type: mrr_at_100
|
632 |
+
value: 62.653000000000006
|
633 |
+
- type: mrr_at_1000
|
634 |
+
value: 62.699000000000005
|
635 |
+
- type: mrr_at_3
|
636 |
+
value: 60.5
|
637 |
+
- type: mrr_at_5
|
638 |
+
value: 61.47
|
639 |
+
- type: ndcg_at_1
|
640 |
+
value: 56.00000000000001
|
641 |
+
- type: ndcg_at_10
|
642 |
+
value: 65.199
|
643 |
+
- type: ndcg_at_100
|
644 |
+
value: 67.79899999999999
|
645 |
+
- type: ndcg_at_1000
|
646 |
+
value: 69.056
|
647 |
+
- type: ndcg_at_3
|
648 |
+
value: 61.814
|
649 |
+
- type: ndcg_at_5
|
650 |
+
value: 63.553000000000004
|
651 |
+
- type: precision_at_1
|
652 |
+
value: 56.00000000000001
|
653 |
+
- type: precision_at_10
|
654 |
+
value: 7.51
|
655 |
+
- type: precision_at_100
|
656 |
+
value: 0.878
|
657 |
+
- type: precision_at_1000
|
658 |
+
value: 0.098
|
659 |
+
- type: precision_at_3
|
660 |
+
value: 21.967
|
661 |
+
- type: precision_at_5
|
662 |
+
value: 14.02
|
663 |
+
- type: recall_at_1
|
664 |
+
value: 56.00000000000001
|
665 |
+
- type: recall_at_10
|
666 |
+
value: 75.1
|
667 |
+
- type: recall_at_100
|
668 |
+
value: 87.8
|
669 |
+
- type: recall_at_1000
|
670 |
+
value: 97.7
|
671 |
+
- type: recall_at_3
|
672 |
+
value: 65.9
|
673 |
+
- type: recall_at_5
|
674 |
+
value: 70.1
|
675 |
+
- task:
|
676 |
+
type: Reranking
|
677 |
+
dataset:
|
678 |
+
type: C-MTEB/Mmarco-reranking
|
679 |
+
name: MTEB MMarcoReranking
|
680 |
+
config: default
|
681 |
+
split: dev
|
682 |
+
revision: None
|
683 |
+
metrics:
|
684 |
+
- type: map
|
685 |
+
value: 32.74158258279793
|
686 |
+
- type: mrr
|
687 |
+
value: 31.56071428571428
|
688 |
+
- task:
|
689 |
+
type: Classification
|
690 |
+
dataset:
|
691 |
+
type: C-MTEB/MultilingualSentiment-classification
|
692 |
+
name: MTEB MultilingualSentiment
|
693 |
+
config: default
|
694 |
+
split: validation
|
695 |
+
revision: None
|
696 |
+
metrics:
|
697 |
+
- type: accuracy
|
698 |
+
value: 78.96666666666667
|
699 |
+
- type: f1
|
700 |
+
value: 78.82528563818045
|
701 |
+
- task:
|
702 |
+
type: PairClassification
|
703 |
+
dataset:
|
704 |
+
type: C-MTEB/OCNLI
|
705 |
+
name: MTEB Ocnli
|
706 |
+
config: default
|
707 |
+
split: validation
|
708 |
+
revision: None
|
709 |
+
metrics:
|
710 |
+
- type: cos_sim_accuracy
|
711 |
+
value: 83.54087709799674
|
712 |
+
- type: cos_sim_ap
|
713 |
+
value: 87.26170197077586
|
714 |
+
- type: cos_sim_f1
|
715 |
+
value: 84.7609561752988
|
716 |
+
- type: cos_sim_precision
|
717 |
+
value: 80.20735155513667
|
718 |
+
- type: cos_sim_recall
|
719 |
+
value: 89.86272439281943
|
720 |
+
- type: dot_accuracy
|
721 |
+
value: 72.22523010286952
|
722 |
+
- type: dot_ap
|
723 |
+
value: 79.51975358187732
|
724 |
+
- type: dot_f1
|
725 |
+
value: 76.32183908045977
|
726 |
+
- type: dot_precision
|
727 |
+
value: 67.58957654723126
|
728 |
+
- type: dot_recall
|
729 |
+
value: 87.64519535374869
|
730 |
+
- type: euclidean_accuracy
|
731 |
+
value: 82.0249052517596
|
732 |
+
- type: euclidean_ap
|
733 |
+
value: 85.32829948726406
|
734 |
+
- type: euclidean_f1
|
735 |
+
value: 83.24924318869829
|
736 |
+
- type: euclidean_precision
|
737 |
+
value: 79.71014492753623
|
738 |
+
- type: euclidean_recall
|
739 |
+
value: 87.11721224920802
|
740 |
+
- type: manhattan_accuracy
|
741 |
+
value: 82.13318895506227
|
742 |
+
- type: manhattan_ap
|
743 |
+
value: 85.28856869288006
|
744 |
+
- type: manhattan_f1
|
745 |
+
value: 83.34946757018393
|
746 |
+
- type: manhattan_precision
|
747 |
+
value: 76.94369973190348
|
748 |
+
- type: manhattan_recall
|
749 |
+
value: 90.91869060190075
|
750 |
+
- type: max_accuracy
|
751 |
+
value: 83.54087709799674
|
752 |
+
- type: max_ap
|
753 |
+
value: 87.26170197077586
|
754 |
+
- type: max_f1
|
755 |
+
value: 84.7609561752988
|
756 |
+
- task:
|
757 |
+
type: Classification
|
758 |
+
dataset:
|
759 |
+
type: C-MTEB/OnlineShopping-classification
|
760 |
+
name: MTEB OnlineShopping
|
761 |
+
config: default
|
762 |
+
split: test
|
763 |
+
revision: None
|
764 |
+
metrics:
|
765 |
+
- type: accuracy
|
766 |
+
value: 94.56
|
767 |
+
- type: ap
|
768 |
+
value: 92.80848436710805
|
769 |
+
- type: f1
|
770 |
+
value: 94.54951966576111
|
771 |
+
- task:
|
772 |
+
type: STS
|
773 |
+
dataset:
|
774 |
+
type: C-MTEB/PAWSX
|
775 |
+
name: MTEB PAWSX
|
776 |
+
config: default
|
777 |
+
split: test
|
778 |
+
revision: None
|
779 |
+
metrics:
|
780 |
+
- type: cos_sim_pearson
|
781 |
+
value: 39.0866558287863
|
782 |
+
- type: cos_sim_spearman
|
783 |
+
value: 45.9211126233312
|
784 |
+
- type: euclidean_pearson
|
785 |
+
value: 44.86568743222145
|
786 |
+
- type: euclidean_spearman
|
787 |
+
value: 45.63882757207507
|
788 |
+
- type: manhattan_pearson
|
789 |
+
value: 44.89480036909126
|
790 |
+
- type: manhattan_spearman
|
791 |
+
value: 45.65929449046206
|
792 |
+
- task:
|
793 |
+
type: STS
|
794 |
+
dataset:
|
795 |
+
type: C-MTEB/QBQTC
|
796 |
+
name: MTEB QBQTC
|
797 |
+
config: default
|
798 |
+
split: test
|
799 |
+
revision: None
|
800 |
+
metrics:
|
801 |
+
- type: cos_sim_pearson
|
802 |
+
value: 43.04701793979569
|
803 |
+
- type: cos_sim_spearman
|
804 |
+
value: 44.87491033760315
|
805 |
+
- type: euclidean_pearson
|
806 |
+
value: 36.2004061032567
|
807 |
+
- type: euclidean_spearman
|
808 |
+
value: 41.44823909683865
|
809 |
+
- type: manhattan_pearson
|
810 |
+
value: 36.136113427955095
|
811 |
+
- type: manhattan_spearman
|
812 |
+
value: 41.39225495993949
|
813 |
+
- task:
|
814 |
+
type: STS
|
815 |
+
dataset:
|
816 |
+
type: mteb/sts22-crosslingual-sts
|
817 |
+
name: MTEB STS22 (zh)
|
818 |
+
config: zh
|
819 |
+
split: test
|
820 |
+
revision: None
|
821 |
+
metrics:
|
822 |
+
- type: cos_sim_pearson
|
823 |
+
value: 61.65611315777857
|
824 |
+
- type: cos_sim_spearman
|
825 |
+
value: 64.4067673105648
|
826 |
+
- type: euclidean_pearson
|
827 |
+
value: 61.814977248797184
|
828 |
+
- type: euclidean_spearman
|
829 |
+
value: 63.99473350700169
|
830 |
+
- type: manhattan_pearson
|
831 |
+
value: 61.684304629588624
|
832 |
+
- type: manhattan_spearman
|
833 |
+
value: 63.97831213239316
|
834 |
+
- task:
|
835 |
+
type: STS
|
836 |
+
dataset:
|
837 |
+
type: C-MTEB/STSB
|
838 |
+
name: MTEB STSB
|
839 |
+
config: default
|
840 |
+
split: test
|
841 |
+
revision: None
|
842 |
+
metrics:
|
843 |
+
- type: cos_sim_pearson
|
844 |
+
value: 76.57324933064379
|
845 |
+
- type: cos_sim_spearman
|
846 |
+
value: 79.23602286949782
|
847 |
+
- type: euclidean_pearson
|
848 |
+
value: 80.28226284310948
|
849 |
+
- type: euclidean_spearman
|
850 |
+
value: 80.32210477608423
|
851 |
+
- type: manhattan_pearson
|
852 |
+
value: 80.27262188617811
|
853 |
+
- type: manhattan_spearman
|
854 |
+
value: 80.31619185039723
|
855 |
+
- task:
|
856 |
+
type: Reranking
|
857 |
+
dataset:
|
858 |
+
type: C-MTEB/T2Reranking
|
859 |
+
name: MTEB T2Reranking
|
860 |
+
config: default
|
861 |
+
split: dev
|
862 |
+
revision: None
|
863 |
+
metrics:
|
864 |
+
- type: map
|
865 |
+
value: 67.05266891356277
|
866 |
+
- type: mrr
|
867 |
+
value: 77.1906333623497
|
868 |
+
- task:
|
869 |
+
type: Retrieval
|
870 |
+
dataset:
|
871 |
+
type: C-MTEB/T2Retrieval
|
872 |
+
name: MTEB T2Retrieval
|
873 |
+
config: default
|
874 |
+
split: dev
|
875 |
+
revision: None
|
876 |
+
metrics:
|
877 |
+
- type: map_at_1
|
878 |
+
value: 28.212
|
879 |
+
- type: map_at_10
|
880 |
+
value: 78.932
|
881 |
+
- type: map_at_100
|
882 |
+
value: 82.51899999999999
|
883 |
+
- type: map_at_1000
|
884 |
+
value: 82.575
|
885 |
+
- type: map_at_3
|
886 |
+
value: 55.614
|
887 |
+
- type: map_at_5
|
888 |
+
value: 68.304
|
889 |
+
- type: mrr_at_1
|
890 |
+
value: 91.211
|
891 |
+
- type: mrr_at_10
|
892 |
+
value: 93.589
|
893 |
+
- type: mrr_at_100
|
894 |
+
value: 93.659
|
895 |
+
- type: mrr_at_1000
|
896 |
+
value: 93.662
|
897 |
+
- type: mrr_at_3
|
898 |
+
value: 93.218
|
899 |
+
- type: mrr_at_5
|
900 |
+
value: 93.453
|
901 |
+
- type: ndcg_at_1
|
902 |
+
value: 91.211
|
903 |
+
- type: ndcg_at_10
|
904 |
+
value: 86.24000000000001
|
905 |
+
- type: ndcg_at_100
|
906 |
+
value: 89.614
|
907 |
+
- type: ndcg_at_1000
|
908 |
+
value: 90.14
|
909 |
+
- type: ndcg_at_3
|
910 |
+
value: 87.589
|
911 |
+
- type: ndcg_at_5
|
912 |
+
value: 86.265
|
913 |
+
- type: precision_at_1
|
914 |
+
value: 91.211
|
915 |
+
- type: precision_at_10
|
916 |
+
value: 42.626
|
917 |
+
- type: precision_at_100
|
918 |
+
value: 5.043
|
919 |
+
- type: precision_at_1000
|
920 |
+
value: 0.517
|
921 |
+
- type: precision_at_3
|
922 |
+
value: 76.42
|
923 |
+
- type: precision_at_5
|
924 |
+
value: 64.045
|
925 |
+
- type: recall_at_1
|
926 |
+
value: 28.212
|
927 |
+
- type: recall_at_10
|
928 |
+
value: 85.223
|
929 |
+
- type: recall_at_100
|
930 |
+
value: 96.229
|
931 |
+
- type: recall_at_1000
|
932 |
+
value: 98.849
|
933 |
+
- type: recall_at_3
|
934 |
+
value: 57.30800000000001
|
935 |
+
- type: recall_at_5
|
936 |
+
value: 71.661
|
937 |
+
- task:
|
938 |
+
type: Classification
|
939 |
+
dataset:
|
940 |
+
type: C-MTEB/TNews-classification
|
941 |
+
name: MTEB TNews
|
942 |
+
config: default
|
943 |
+
split: validation
|
944 |
+
revision: None
|
945 |
+
metrics:
|
946 |
+
- type: accuracy
|
947 |
+
value: 54.385000000000005
|
948 |
+
- type: f1
|
949 |
+
value: 52.38762400903556
|
950 |
+
- task:
|
951 |
+
type: Clustering
|
952 |
+
dataset:
|
953 |
+
type: C-MTEB/ThuNewsClusteringP2P
|
954 |
+
name: MTEB ThuNewsClusteringP2P
|
955 |
+
config: default
|
956 |
+
split: test
|
957 |
+
revision: None
|
958 |
+
metrics:
|
959 |
+
- type: v_measure
|
960 |
+
value: 74.55283855942916
|
961 |
+
- task:
|
962 |
+
type: Clustering
|
963 |
+
dataset:
|
964 |
+
type: C-MTEB/ThuNewsClusteringS2S
|
965 |
+
name: MTEB ThuNewsClusteringS2S
|
966 |
+
config: default
|
967 |
+
split: test
|
968 |
+
revision: None
|
969 |
+
metrics:
|
970 |
+
- type: v_measure
|
971 |
+
value: 68.55115316700493
|
972 |
+
- task:
|
973 |
+
type: Retrieval
|
974 |
+
dataset:
|
975 |
+
type: C-MTEB/VideoRetrieval
|
976 |
+
name: MTEB VideoRetrieval
|
977 |
+
config: default
|
978 |
+
split: dev
|
979 |
+
revision: None
|
980 |
+
metrics:
|
981 |
+
- type: map_at_1
|
982 |
+
value: 58.8
|
983 |
+
- type: map_at_10
|
984 |
+
value: 69.035
|
985 |
+
- type: map_at_100
|
986 |
+
value: 69.52000000000001
|
987 |
+
- type: map_at_1000
|
988 |
+
value: 69.529
|
989 |
+
- type: map_at_3
|
990 |
+
value: 67.417
|
991 |
+
- type: map_at_5
|
992 |
+
value: 68.407
|
993 |
+
- type: mrr_at_1
|
994 |
+
value: 58.8
|
995 |
+
- type: mrr_at_10
|
996 |
+
value: 69.035
|
997 |
+
- type: mrr_at_100
|
998 |
+
value: 69.52000000000001
|
999 |
+
- type: mrr_at_1000
|
1000 |
+
value: 69.529
|
1001 |
+
- type: mrr_at_3
|
1002 |
+
value: 67.417
|
1003 |
+
- type: mrr_at_5
|
1004 |
+
value: 68.407
|
1005 |
+
- type: ndcg_at_1
|
1006 |
+
value: 58.8
|
1007 |
+
- type: ndcg_at_10
|
1008 |
+
value: 73.395
|
1009 |
+
- type: ndcg_at_100
|
1010 |
+
value: 75.62
|
1011 |
+
- type: ndcg_at_1000
|
1012 |
+
value: 75.90299999999999
|
1013 |
+
- type: ndcg_at_3
|
1014 |
+
value: 70.11800000000001
|
1015 |
+
- type: ndcg_at_5
|
1016 |
+
value: 71.87400000000001
|
1017 |
+
- type: precision_at_1
|
1018 |
+
value: 58.8
|
1019 |
+
- type: precision_at_10
|
1020 |
+
value: 8.68
|
1021 |
+
- type: precision_at_100
|
1022 |
+
value: 0.9690000000000001
|
1023 |
+
- type: precision_at_1000
|
1024 |
+
value: 0.099
|
1025 |
+
- type: precision_at_3
|
1026 |
+
value: 25.967000000000002
|
1027 |
+
- type: precision_at_5
|
1028 |
+
value: 16.42
|
1029 |
+
- type: recall_at_1
|
1030 |
+
value: 58.8
|
1031 |
+
- type: recall_at_10
|
1032 |
+
value: 86.8
|
1033 |
+
- type: recall_at_100
|
1034 |
+
value: 96.89999999999999
|
1035 |
+
- type: recall_at_1000
|
1036 |
+
value: 99.2
|
1037 |
+
- type: recall_at_3
|
1038 |
+
value: 77.9
|
1039 |
+
- type: recall_at_5
|
1040 |
+
value: 82.1
|
1041 |
+
- task:
|
1042 |
+
type: Classification
|
1043 |
+
dataset:
|
1044 |
+
type: C-MTEB/waimai-classification
|
1045 |
+
name: MTEB Waimai
|
1046 |
+
config: default
|
1047 |
+
split: test
|
1048 |
+
revision: None
|
1049 |
+
metrics:
|
1050 |
+
- type: accuracy
|
1051 |
+
value: 89.42
|
1052 |
+
- type: ap
|
1053 |
+
value: 75.35978503182068
|
1054 |
+
- type: f1
|
1055 |
+
value: 88.01006394348263
|
1056 |
+
---
|
1057 |
+
|
1058 |
+
|
1059 |
+
## Yinka
|
1060 |
+
|
1061 |
+
Yinka embedding 模型是在开原模型[stella-v3.5-mrl](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d)上续训的,采用了[piccolo2](https://huggingface.co/sensenova/piccolo-large-zh-v2)提到的多任务混合损失(multi-task hybrid loss training)。同样本模型也支持了可变的向量维度。
|
1062 |
+
|
1063 |
+
## 使用方法
|
1064 |
+
该模型的使用方法同[stella-v3.5-mrl](https://huggingface.co/infgrad/stella-mrl-large-zh-v3.5-1792d)一样, 无需任何前缀。
|
1065 |
+
```python
|
1066 |
+
from sentence_transformers import SentenceTransformer
|
1067 |
+
from sklearn.preprocessing import normalize
|
1068 |
+
|
1069 |
+
model = SentenceTransformer("")
|
1070 |
+
# 注意先不要normalize! 选取前n维后再normalize
|
1071 |
+
vectors = model.encode(["text1", "text2"], normalize_embeddings=False)
|
1072 |
+
print(vectors.shape) # shape is [2,1792]
|
1073 |
+
n_dims = 768
|
1074 |
+
cut_vecs = normalize(vectors[:, :n_dims])
|
1075 |
+
```
|
1076 |
+
|
1077 |
+
## 训练细节
|
1078 |
+
TODO
|
1079 |
+
|
1080 |
+
## Licence
|
1081 |
+
本模型采用MIT licence.
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"directionality": "bidi",
|
9 |
+
"gradient_checkpointing": false,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-12,
|
16 |
+
"max_position_embeddings": 512,
|
17 |
+
"model_type": "bert",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float16",
|
23 |
+
"transformers_version": "4.36.2",
|
24 |
+
"type_vocab_size": 2,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 21128
|
27 |
+
}
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Dense",
|
18 |
+
"type": "sentence_transformers.models.Dense"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:80075250018c65eba25c69bcc56531bee813eeebf25b0e2aab55da72228d371a
|
3 |
+
size 654772222
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[PAD]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"100": {
|
12 |
+
"content": "[UNK]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"101": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"102": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"103": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"clean_up_tokenization_spaces": true,
|
45 |
+
"cls_token": "[CLS]",
|
46 |
+
"do_basic_tokenize": true,
|
47 |
+
"do_lower_case": true,
|
48 |
+
"mask_token": "[MASK]",
|
49 |
+
"model_max_length": 1000000000000000019884624838656,
|
50 |
+
"never_split": null,
|
51 |
+
"pad_token": "[PAD]",
|
52 |
+
"sep_token": "[SEP]",
|
53 |
+
"strip_accents": null,
|
54 |
+
"tokenize_chinese_chars": true,
|
55 |
+
"tokenizer_class": "BertTokenizer",
|
56 |
+
"unk_token": "[UNK]"
|
57 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|