metadata
tags:
- generated_from_trainer
datasets:
- common_voice_1_0
metrics:
- wer
model-index:
- name: fineturning-without-pretraining-2
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_1_0
type: common_voice_1_0
config: en
split: validation
args: en
metrics:
- name: Wer
type: wer
value: 0.9999353420406052
fineturning-without-pretraining-2
This model is a fine-tuned version of on the common_voice_1_0 dataset. It achieves the following results on the evaluation set:
- Loss: 779.5451
- Wer: 0.9999
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 35
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1829.2385 | 4.29 | 500 | 781.0485 | 0.9999 |
1459.4001 | 8.58 | 1000 | 777.1782 | 0.9999 |
1454.826 | 12.88 | 1500 | 777.3484 | 0.9999 |
1448.8867 | 17.17 | 2000 | 788.0052 | 0.9999 |
1445.467 | 21.46 | 2500 | 779.9430 | 0.9999 |
1438.5691 | 25.75 | 3000 | 786.7927 | 0.9999 |
1445.318 | 30.04 | 3500 | 789.1374 | 0.9999 |
1442.6181 | 34.33 | 4000 | 779.5451 | 0.9999 |
Framework versions
- Transformers 4.39.3
- Pytorch 2.1.2
- Datasets 2.18.0
- Tokenizers 0.15.2