--- tags: - generated_from_trainer datasets: - common_voice_1_0 metrics: - wer model-index: - name: fineturning-without-pretraining-2 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_1_0 type: common_voice_1_0 config: en split: validation args: en metrics: - name: Wer type: wer value: 0.9999353420406052 --- # fineturning-without-pretraining-2 This model is a fine-tuned version of [](https://huggingface.co/) on the common_voice_1_0 dataset. It achieves the following results on the evaluation set: - Loss: 779.5451 - Wer: 0.9999 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0003 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 35 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1829.2385 | 4.29 | 500 | 781.0485 | 0.9999 | | 1459.4001 | 8.58 | 1000 | 777.1782 | 0.9999 | | 1454.826 | 12.88 | 1500 | 777.3484 | 0.9999 | | 1448.8867 | 17.17 | 2000 | 788.0052 | 0.9999 | | 1445.467 | 21.46 | 2500 | 779.9430 | 0.9999 | | 1438.5691 | 25.75 | 3000 | 786.7927 | 0.9999 | | 1445.318 | 30.04 | 3500 | 789.1374 | 0.9999 | | 1442.6181 | 34.33 | 4000 | 779.5451 | 0.9999 | ### Framework versions - Transformers 4.39.3 - Pytorch 2.1.2 - Datasets 2.18.0 - Tokenizers 0.15.2