|
--- |
|
license: apache-2.0 |
|
base_model: lxyuan/distilbert-base-multilingual-cased-sentiments-student |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- indonlu |
|
metrics: |
|
- accuracy |
|
- precision |
|
- recall |
|
- f1 |
|
model-index: |
|
- name: sentiment2 |
|
results: |
|
- task: |
|
name: Text Classification |
|
type: text-classification |
|
dataset: |
|
name: indonlu |
|
type: indonlu |
|
config: smsa |
|
split: validation |
|
args: smsa |
|
metrics: |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.915079365079365 |
|
- name: Precision |
|
type: precision |
|
value: 0.9152979362942885 |
|
- name: Recall |
|
type: recall |
|
value: 0.915079365079365 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9149940431800128 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# sentiment2 |
|
|
|
This model is a fine-tuned version of [lxyuan/distilbert-base-multilingual-cased-sentiments-student](https://huggingface.co/lxyuan/distilbert-base-multilingual-cased-sentiments-student) on the indonlu dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.6085 |
|
- Accuracy: 0.9151 |
|
- Precision: 0.9153 |
|
- Recall: 0.9151 |
|
- F1: 0.9150 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 40 |
|
- eval_batch_size: 40 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.01 |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |
|
|:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| |
|
| No log | 1.0 | 275 | 0.2543 | 0.9190 | 0.9213 | 0.9190 | 0.9196 | |
|
| 0.2191 | 2.0 | 550 | 0.2710 | 0.9143 | 0.9133 | 0.9143 | 0.9134 | |
|
| 0.2191 | 3.0 | 825 | 0.3715 | 0.9135 | 0.9144 | 0.9135 | 0.9114 | |
|
| 0.0714 | 4.0 | 1100 | 0.4751 | 0.9071 | 0.9085 | 0.9071 | 0.9077 | |
|
| 0.0714 | 5.0 | 1375 | 0.4859 | 0.9206 | 0.9214 | 0.9206 | 0.9203 | |
|
| 0.0263 | 6.0 | 1650 | 0.5383 | 0.9143 | 0.9155 | 0.9143 | 0.9143 | |
|
| 0.0263 | 7.0 | 1925 | 0.5630 | 0.9167 | 0.9166 | 0.9167 | 0.9165 | |
|
| 0.0126 | 8.0 | 2200 | 0.5916 | 0.9151 | 0.9151 | 0.9151 | 0.9146 | |
|
| 0.0126 | 9.0 | 2475 | 0.6073 | 0.9135 | 0.9130 | 0.9135 | 0.9131 | |
|
| 0.0056 | 10.0 | 2750 | 0.6085 | 0.9151 | 0.9153 | 0.9151 | 0.9150 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.35.2 |
|
- Pytorch 2.1.0+cu121 |
|
- Datasets 2.17.1 |
|
- Tokenizers 0.15.2 |
|
|