AptaArkana's picture
Model save
d6bbb69 verified
metadata
license: apache-2.0
base_model: lxyuan/distilbert-base-multilingual-cased-sentiments-student
tags:
  - generated_from_trainer
datasets:
  - indonlu
metrics:
  - accuracy
  - precision
  - recall
  - f1
model-index:
  - name: sentiment2
    results:
      - task:
          name: Text Classification
          type: text-classification
        dataset:
          name: indonlu
          type: indonlu
          config: smsa
          split: validation
          args: smsa
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.915079365079365
          - name: Precision
            type: precision
            value: 0.9152979362942885
          - name: Recall
            type: recall
            value: 0.915079365079365
          - name: F1
            type: f1
            value: 0.9149940431800128

sentiment2

This model is a fine-tuned version of lxyuan/distilbert-base-multilingual-cased-sentiments-student on the indonlu dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6085
  • Accuracy: 0.9151
  • Precision: 0.9153
  • Recall: 0.9151
  • F1: 0.9150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 40
  • eval_batch_size: 40
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.01
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Recall F1
No log 1.0 275 0.2543 0.9190 0.9213 0.9190 0.9196
0.2191 2.0 550 0.2710 0.9143 0.9133 0.9143 0.9134
0.2191 3.0 825 0.3715 0.9135 0.9144 0.9135 0.9114
0.0714 4.0 1100 0.4751 0.9071 0.9085 0.9071 0.9077
0.0714 5.0 1375 0.4859 0.9206 0.9214 0.9206 0.9203
0.0263 6.0 1650 0.5383 0.9143 0.9155 0.9143 0.9143
0.0263 7.0 1925 0.5630 0.9167 0.9166 0.9167 0.9165
0.0126 8.0 2200 0.5916 0.9151 0.9151 0.9151 0.9146
0.0126 9.0 2475 0.6073 0.9135 0.9130 0.9135 0.9131
0.0056 10.0 2750 0.6085 0.9151 0.9153 0.9151 0.9150

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.1
  • Tokenizers 0.15.2