AptaArkana's picture
Training complete
6a16f22 verified
metadata
license: mit
base_model: cahya/bert-base-indonesian-NER
tags:
  - generated_from_trainer
datasets:
  - indonlu_nergrit
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: belajarner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: indonlu_nergrit
          type: indonlu_nergrit
          config: indonlu_nergrit_source
          split: validation
          args: indonlu_nergrit_source
        metrics:
          - name: Precision
            type: precision
            value: 0.7716312056737589
          - name: Recall
            type: recall
            value: 0.8217522658610272
          - name: F1
            type: f1
            value: 0.7959034381858083
          - name: Accuracy
            type: accuracy
            value: 0.9477048970719857

belajarner

This model is a fine-tuned version of cahya/bert-base-indonesian-NER on the indonlu_nergrit dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2621
  • Precision: 0.7716
  • Recall: 0.8218
  • F1: 0.7959
  • Accuracy: 0.9477

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 8

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 209 0.1633 0.7678 0.8142 0.7903 0.9476
No log 2.0 418 0.1623 0.7631 0.8127 0.7871 0.9462
0.1633 3.0 627 0.1978 0.7535 0.8172 0.7841 0.9459
0.1633 4.0 836 0.2103 0.7573 0.8202 0.7875 0.9460
0.0423 5.0 1045 0.2236 0.7757 0.8097 0.7923 0.9487
0.0423 6.0 1254 0.2529 0.7843 0.8293 0.8062 0.9474
0.0423 7.0 1463 0.2559 0.77 0.8142 0.7915 0.9467
0.0136 8.0 1672 0.2621 0.7716 0.8218 0.7959 0.9477

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.0+cu121
  • Datasets 2.17.0
  • Tokenizers 0.15.2