--- license: mit base_model: cahya/bert-base-indonesian-NER tags: - generated_from_trainer datasets: - indonlu_nergrit metrics: - precision - recall - f1 - accuracy model-index: - name: belajarner results: - task: name: Token Classification type: token-classification dataset: name: indonlu_nergrit type: indonlu_nergrit config: indonlu_nergrit_source split: validation args: indonlu_nergrit_source metrics: - name: Precision type: precision value: 0.7716312056737589 - name: Recall type: recall value: 0.8217522658610272 - name: F1 type: f1 value: 0.7959034381858083 - name: Accuracy type: accuracy value: 0.9477048970719857 --- # belajarner This model is a fine-tuned version of [cahya/bert-base-indonesian-NER](https://huggingface.co/cahya/bert-base-indonesian-NER) on the indonlu_nergrit dataset. It achieves the following results on the evaluation set: - Loss: 0.2621 - Precision: 0.7716 - Recall: 0.8218 - F1: 0.7959 - Accuracy: 0.9477 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 8 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 209 | 0.1633 | 0.7678 | 0.8142 | 0.7903 | 0.9476 | | No log | 2.0 | 418 | 0.1623 | 0.7631 | 0.8127 | 0.7871 | 0.9462 | | 0.1633 | 3.0 | 627 | 0.1978 | 0.7535 | 0.8172 | 0.7841 | 0.9459 | | 0.1633 | 4.0 | 836 | 0.2103 | 0.7573 | 0.8202 | 0.7875 | 0.9460 | | 0.0423 | 5.0 | 1045 | 0.2236 | 0.7757 | 0.8097 | 0.7923 | 0.9487 | | 0.0423 | 6.0 | 1254 | 0.2529 | 0.7843 | 0.8293 | 0.8062 | 0.9474 | | 0.0423 | 7.0 | 1463 | 0.2559 | 0.77 | 0.8142 | 0.7915 | 0.9467 | | 0.0136 | 8.0 | 1672 | 0.2621 | 0.7716 | 0.8218 | 0.7959 | 0.9477 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2