hamsa-v0.6Q / README.md
Ahmed107's picture
End of training
f4ab4d2
---
language:
- ar
license: apache-2.0
base_model: openai/whisper-medium
tags:
- nadsoft
- generated_from_trainer
datasets:
- nadsoft/arabic-98
metrics:
- wer
model-index:
- name: ./hamsa-v0.6Q
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: nadsoft/arabic-98
type: nadsoft/arabic-98
metrics:
- name: Wer
type: wer
value: 23.412419116812348
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# ./hamsa-v0.6Q
This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the nadsoft/arabic-98 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2781
- Wer: 23.4124
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 300
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.9225 | 0.33 | 100 | 0.8743 | 24.5136 |
| 0.2721 | 0.67 | 200 | 0.2782 | 24.1367 |
| 0.2474 | 1.0 | 300 | 0.2781 | 23.4124 |
### Framework versions
- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.2.dev0
- Tokenizers 0.15.0