hamsa-v0.6Q / README.md
Ahmed107's picture
End of training
f4ab4d2
metadata
language:
  - ar
license: apache-2.0
base_model: openai/whisper-medium
tags:
  - nadsoft
  - generated_from_trainer
datasets:
  - nadsoft/arabic-98
metrics:
  - wer
model-index:
  - name: ./hamsa-v0.6Q
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: nadsoft/arabic-98
          type: nadsoft/arabic-98
        metrics:
          - name: Wer
            type: wer
            value: 23.412419116812348

./hamsa-v0.6Q

This model is a fine-tuned version of openai/whisper-medium on the nadsoft/arabic-98 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2781
  • Wer: 23.4124

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 300
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.9225 0.33 100 0.8743 24.5136
0.2721 0.67 200 0.2782 24.1367
0.2474 1.0 300 0.2781 23.4124

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.0+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0